Matches in SemOpenAlex for { <https://semopenalex.org/work/W2201681750> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2201681750 abstract "In this paper, we are interested in developing compositional models to explicit representing pose, parts and attributes and tackling the tasks of attribute recognition, pose estimation and part localization jointly. This is different from the recent trend of using CNN-based approaches for training and testing on these tasks separately with a large amount of data. Conventional attribute models typically use a large number of region-based attribute classifiers on parts of pre-trained pose estimator without explicitly detecting the object or its parts, or considering the correlations between attributes. In contrast, our approach jointly represents both the object parts and their semantic attributes within a unified compositional hierarchy. We apply our attributed grammar model to the task of human parsing by simultaneously performing part localization and attribute recognition. We show our modeling helps performance improvements on pose-estimation task and also outperforms on other existing methods on attribute prediction task." @default.
- W2201681750 created "2016-06-24" @default.
- W2201681750 creator A5029515654 @default.
- W2201681750 creator A5034228010 @default.
- W2201681750 date "2015-12-01" @default.
- W2201681750 modified "2023-10-16" @default.
- W2201681750 title "Attributed Grammars for Joint Estimation of Human Attributes, Part and Pose" @default.
- W2201681750 cites W1994529670 @default.
- W2201681750 cites W1997691213 @default.
- W2201681750 cites W2009647132 @default.
- W2201681750 cites W2013640163 @default.
- W2201681750 cites W2030536784 @default.
- W2201681750 cites W2036989445 @default.
- W2201681750 cites W2045792079 @default.
- W2201681750 cites W2045798786 @default.
- W2201681750 cites W2054990548 @default.
- W2201681750 cites W2076542142 @default.
- W2201681750 cites W2079789819 @default.
- W2201681750 cites W2089505529 @default.
- W2201681750 cites W2089779414 @default.
- W2201681750 cites W2098411764 @default.
- W2201681750 cites W2101392314 @default.
- W2201681750 cites W2102605133 @default.
- W2201681750 cites W2102734144 @default.
- W2201681750 cites W2103015390 @default.
- W2201681750 cites W2113325037 @default.
- W2201681750 cites W2121939926 @default.
- W2201681750 cites W2126448884 @default.
- W2201681750 cites W2128560777 @default.
- W2201681750 cites W2131263044 @default.
- W2201681750 cites W2143487029 @default.
- W2201681750 cites W2147414309 @default.
- W2201681750 cites W2156928353 @default.
- W2201681750 cites W2168356304 @default.
- W2201681750 cites W2429914308 @default.
- W2201681750 cites W2535410496 @default.
- W2201681750 cites W3143107425 @default.
- W2201681750 cites W4205969993 @default.
- W2201681750 doi "https://doi.org/10.1109/iccv.2015.273" @default.
- W2201681750 hasPublicationYear "2015" @default.
- W2201681750 type Work @default.
- W2201681750 sameAs 2201681750 @default.
- W2201681750 citedByCount "20" @default.
- W2201681750 countsByYear W22016817502015 @default.
- W2201681750 countsByYear W22016817502016 @default.
- W2201681750 countsByYear W22016817502017 @default.
- W2201681750 countsByYear W22016817502018 @default.
- W2201681750 countsByYear W22016817502019 @default.
- W2201681750 countsByYear W22016817502020 @default.
- W2201681750 countsByYear W22016817502021 @default.
- W2201681750 crossrefType "proceedings-article" @default.
- W2201681750 hasAuthorship W2201681750A5029515654 @default.
- W2201681750 hasAuthorship W2201681750A5034228010 @default.
- W2201681750 hasConcept C127413603 @default.
- W2201681750 hasConcept C154945302 @default.
- W2201681750 hasConcept C170154142 @default.
- W2201681750 hasConcept C18555067 @default.
- W2201681750 hasConcept C201995342 @default.
- W2201681750 hasConcept C204321447 @default.
- W2201681750 hasConcept C41008148 @default.
- W2201681750 hasConcept C53893814 @default.
- W2201681750 hasConcept C96250715 @default.
- W2201681750 hasConceptScore W2201681750C127413603 @default.
- W2201681750 hasConceptScore W2201681750C154945302 @default.
- W2201681750 hasConceptScore W2201681750C170154142 @default.
- W2201681750 hasConceptScore W2201681750C18555067 @default.
- W2201681750 hasConceptScore W2201681750C201995342 @default.
- W2201681750 hasConceptScore W2201681750C204321447 @default.
- W2201681750 hasConceptScore W2201681750C41008148 @default.
- W2201681750 hasConceptScore W2201681750C53893814 @default.
- W2201681750 hasConceptScore W2201681750C96250715 @default.
- W2201681750 hasLocation W22016817501 @default.
- W2201681750 hasOpenAccess W2201681750 @default.
- W2201681750 hasPrimaryLocation W22016817501 @default.
- W2201681750 hasRelatedWork W1512634710 @default.
- W2201681750 hasRelatedWork W1512718085 @default.
- W2201681750 hasRelatedWork W1539505509 @default.
- W2201681750 hasRelatedWork W1569841287 @default.
- W2201681750 hasRelatedWork W1585034923 @default.
- W2201681750 hasRelatedWork W2167662847 @default.
- W2201681750 hasRelatedWork W2789919619 @default.
- W2201681750 hasRelatedWork W3107474891 @default.
- W2201681750 hasRelatedWork W2594281132 @default.
- W2201681750 hasRelatedWork W2610387714 @default.
- W2201681750 isParatext "false" @default.
- W2201681750 isRetracted "false" @default.
- W2201681750 magId "2201681750" @default.
- W2201681750 workType "article" @default.