Matches in SemOpenAlex for { <https://semopenalex.org/work/W2202017175> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2202017175 endingPage "32" @default.
- W2202017175 startingPage "16" @default.
- W2202017175 abstract "Estimation of large financial volatility models is plagued by the curse of dimensionality. As the dimension grows, joint estimation of the parameters becomes unfeasible in practice. This problem is compounded if covariates or conditioning variables (“X”) are added to each volatility equation. The problem is especially acute for non-exponential volatility models, e.g., GARCH models, since the variables and parameters in these cases are restricted to be positive. Here, we propose an estimator for a multivariate log-GARCH-X model that avoids these problems. The model allows for feedback among the equations, admits several stationary regressors as conditioning variables in the X-part (including leverage terms), and allows for time-varying conditional covariances of unknown form. Strong consistency and asymptotic normality of an equation-by-equation least squares estimator are proved, and the results can be used to undertake inference both within and across equations. The flexibility and usefulness of the estimator is illustrated in two empirical applications." @default.
- W2202017175 created "2016-06-24" @default.
- W2202017175 creator A5006307592 @default.
- W2202017175 creator A5068286603 @default.
- W2202017175 date "2017-01-01" @default.
- W2202017175 modified "2023-09-23" @default.
- W2202017175 title "An equation-by-equation estimator of a multivariate log-GARCH-X model of financial returns" @default.
- W2202017175 cites W1498286110 @default.
- W2202017175 cites W1727659491 @default.
- W2202017175 cites W1921705024 @default.
- W2202017175 cites W1942235537 @default.
- W2202017175 cites W1970694313 @default.
- W2202017175 cites W1999814123 @default.
- W2202017175 cites W2012584493 @default.
- W2202017175 cites W2018090882 @default.
- W2202017175 cites W2022432100 @default.
- W2202017175 cites W2025006397 @default.
- W2202017175 cites W2026061832 @default.
- W2202017175 cites W2032432147 @default.
- W2202017175 cites W2054513759 @default.
- W2202017175 cites W2077679406 @default.
- W2202017175 cites W2079930038 @default.
- W2202017175 cites W2086546462 @default.
- W2202017175 cites W2087686387 @default.
- W2202017175 cites W2100602094 @default.
- W2202017175 cites W2110348891 @default.
- W2202017175 cites W2110752212 @default.
- W2202017175 cites W2126434678 @default.
- W2202017175 cites W2155187653 @default.
- W2202017175 cites W2157403008 @default.
- W2202017175 cites W2170537604 @default.
- W2202017175 cites W2193043149 @default.
- W2202017175 cites W3023429964 @default.
- W2202017175 cites W3121148897 @default.
- W2202017175 cites W3121775877 @default.
- W2202017175 cites W3121954163 @default.
- W2202017175 doi "https://doi.org/10.1016/j.jmva.2016.09.010" @default.
- W2202017175 hasPublicationYear "2017" @default.
- W2202017175 type Work @default.
- W2202017175 sameAs 2202017175 @default.
- W2202017175 citedByCount "13" @default.
- W2202017175 countsByYear W22020171752012 @default.
- W2202017175 countsByYear W22020171752017 @default.
- W2202017175 countsByYear W22020171752018 @default.
- W2202017175 countsByYear W22020171752019 @default.
- W2202017175 countsByYear W22020171752020 @default.
- W2202017175 countsByYear W22020171752022 @default.
- W2202017175 countsByYear W22020171752023 @default.
- W2202017175 crossrefType "journal-article" @default.
- W2202017175 hasAuthorship W2202017175A5006307592 @default.
- W2202017175 hasAuthorship W2202017175A5068286603 @default.
- W2202017175 hasBestOaLocation W22020171751 @default.
- W2202017175 hasConcept C105795698 @default.
- W2202017175 hasConcept C149782125 @default.
- W2202017175 hasConcept C161584116 @default.
- W2202017175 hasConcept C185429906 @default.
- W2202017175 hasConcept C23922673 @default.
- W2202017175 hasConcept C28826006 @default.
- W2202017175 hasConcept C33923547 @default.
- W2202017175 hasConcept C71104824 @default.
- W2202017175 hasConcept C91602232 @default.
- W2202017175 hasConceptScore W2202017175C105795698 @default.
- W2202017175 hasConceptScore W2202017175C149782125 @default.
- W2202017175 hasConceptScore W2202017175C161584116 @default.
- W2202017175 hasConceptScore W2202017175C185429906 @default.
- W2202017175 hasConceptScore W2202017175C23922673 @default.
- W2202017175 hasConceptScore W2202017175C28826006 @default.
- W2202017175 hasConceptScore W2202017175C33923547 @default.
- W2202017175 hasConceptScore W2202017175C71104824 @default.
- W2202017175 hasConceptScore W2202017175C91602232 @default.
- W2202017175 hasLocation W22020171751 @default.
- W2202017175 hasOpenAccess W2202017175 @default.
- W2202017175 hasPrimaryLocation W22020171751 @default.
- W2202017175 hasRelatedWork W1515511824 @default.
- W2202017175 hasRelatedWork W2032044889 @default.
- W2202017175 hasRelatedWork W2033632298 @default.
- W2202017175 hasRelatedWork W2118756735 @default.
- W2202017175 hasRelatedWork W2125646610 @default.
- W2202017175 hasRelatedWork W3122731315 @default.
- W2202017175 hasRelatedWork W3123862872 @default.
- W2202017175 hasRelatedWork W3126007505 @default.
- W2202017175 hasRelatedWork W3142754244 @default.
- W2202017175 hasRelatedWork W4248288019 @default.
- W2202017175 hasVolume "153" @default.
- W2202017175 isParatext "false" @default.
- W2202017175 isRetracted "false" @default.
- W2202017175 magId "2202017175" @default.
- W2202017175 workType "article" @default.