Matches in SemOpenAlex for { <https://semopenalex.org/work/W2203377304> ?p ?o ?g. }
- W2203377304 endingPage "1550023" @default.
- W2203377304 startingPage "1550023" @default.
- W2203377304 abstract "Many engineering optimization problems do not standard mathematical techniques, and cannot be solved using exact algorithms. Evolutionary algorithms have been successfully used for solving such optimization problems. Differential evolution is a simple and efficient population-based evolutionary algorithm for global optimization, which has been applied in many real world engineering applications. However, the performance of this algorithm is sensitive to appropriate choice of its parameters as well as its mutation strategy. In this paper, we propose two different underlying classes of learning automata based differential evolution for adaptive selection of crossover probability and mutation strategy in differential evolution. In the first class, genomes of the population use the same mutation strategy and crossover probability. In the second class, each genome of the population adjusts its own mutation strategy and crossover probability parameter separately. The performance of the proposed methods is analyzed on ten benchmark functions from CEC 2005 and one real-life optimization problem. The obtained results show the efficiency of the proposed algorithms for solving real-parameter function optimization problems." @default.
- W2203377304 created "2016-06-24" @default.
- W2203377304 creator A5008824437 @default.
- W2203377304 creator A5025571155 @default.
- W2203377304 creator A5036944228 @default.
- W2203377304 creator A5050851533 @default.
- W2203377304 date "2015-12-01" @default.
- W2203377304 modified "2023-09-23" @default.
- W2203377304 title "LADE: Learning Automata Based Differential Evolution" @default.
- W2203377304 cites W1595159159 @default.
- W2203377304 cites W1966334496 @default.
- W2203377304 cites W1973370354 @default.
- W2203377304 cites W1975009952 @default.
- W2203377304 cites W1991117248 @default.
- W2203377304 cites W1994966431 @default.
- W2203377304 cites W2007734490 @default.
- W2203377304 cites W2015789009 @default.
- W2203377304 cites W2028031385 @default.
- W2203377304 cites W2028261435 @default.
- W2203377304 cites W2039847237 @default.
- W2203377304 cites W2061005234 @default.
- W2203377304 cites W2063745753 @default.
- W2203377304 cites W2078324766 @default.
- W2203377304 cites W2079466834 @default.
- W2203377304 cites W2081996925 @default.
- W2203377304 cites W2102739272 @default.
- W2203377304 cites W2108008261 @default.
- W2203377304 cites W2112036188 @default.
- W2203377304 cites W2112667413 @default.
- W2203377304 cites W2113673236 @default.
- W2203377304 cites W2116195853 @default.
- W2203377304 cites W2117250519 @default.
- W2203377304 cites W2123682012 @default.
- W2203377304 cites W2125332715 @default.
- W2203377304 cites W2131613989 @default.
- W2203377304 cites W2136871092 @default.
- W2203377304 cites W2137340504 @default.
- W2203377304 cites W2138914910 @default.
- W2203377304 cites W2139534421 @default.
- W2203377304 cites W2151554678 @default.
- W2203377304 cites W2155529731 @default.
- W2203377304 cites W2156194072 @default.
- W2203377304 cites W2156727064 @default.
- W2203377304 cites W2156773695 @default.
- W2203377304 cites W2160759230 @default.
- W2203377304 cites W2162145193 @default.
- W2203377304 cites W2172008182 @default.
- W2203377304 cites W3015222189 @default.
- W2203377304 cites W4233669850 @default.
- W2203377304 cites W4252684946 @default.
- W2203377304 doi "https://doi.org/10.1142/s0218213015500232" @default.
- W2203377304 hasPublicationYear "2015" @default.
- W2203377304 type Work @default.
- W2203377304 sameAs 2203377304 @default.
- W2203377304 citedByCount "26" @default.
- W2203377304 countsByYear W22033773042016 @default.
- W2203377304 countsByYear W22033773042017 @default.
- W2203377304 countsByYear W22033773042018 @default.
- W2203377304 countsByYear W22033773042019 @default.
- W2203377304 countsByYear W22033773042020 @default.
- W2203377304 countsByYear W22033773042021 @default.
- W2203377304 countsByYear W22033773042022 @default.
- W2203377304 countsByYear W22033773042023 @default.
- W2203377304 crossrefType "journal-article" @default.
- W2203377304 hasAuthorship W2203377304A5008824437 @default.
- W2203377304 hasAuthorship W2203377304A5025571155 @default.
- W2203377304 hasAuthorship W2203377304A5036944228 @default.
- W2203377304 hasAuthorship W2203377304A5050851533 @default.
- W2203377304 hasConcept C104317684 @default.
- W2203377304 hasConcept C105902424 @default.
- W2203377304 hasConcept C11413529 @default.
- W2203377304 hasConcept C119857082 @default.
- W2203377304 hasConcept C122507166 @default.
- W2203377304 hasConcept C126255220 @default.
- W2203377304 hasConcept C13280743 @default.
- W2203377304 hasConcept C137836250 @default.
- W2203377304 hasConcept C144024400 @default.
- W2203377304 hasConcept C149923435 @default.
- W2203377304 hasConcept C154945302 @default.
- W2203377304 hasConcept C159149176 @default.
- W2203377304 hasConcept C164752517 @default.
- W2203377304 hasConcept C185592680 @default.
- W2203377304 hasConcept C185798385 @default.
- W2203377304 hasConcept C192122231 @default.
- W2203377304 hasConcept C205649164 @default.
- W2203377304 hasConcept C2908647359 @default.
- W2203377304 hasConcept C33923547 @default.
- W2203377304 hasConcept C41008148 @default.
- W2203377304 hasConcept C501734568 @default.
- W2203377304 hasConcept C55493867 @default.
- W2203377304 hasConcept C74750220 @default.
- W2203377304 hasConcept C81917197 @default.
- W2203377304 hasConcept C8880873 @default.
- W2203377304 hasConceptScore W2203377304C104317684 @default.
- W2203377304 hasConceptScore W2203377304C105902424 @default.
- W2203377304 hasConceptScore W2203377304C11413529 @default.
- W2203377304 hasConceptScore W2203377304C119857082 @default.
- W2203377304 hasConceptScore W2203377304C122507166 @default.