Matches in SemOpenAlex for { <https://semopenalex.org/work/W220383762> ?p ?o ?g. }
- W220383762 abstract "Author(s): Furlotte, Nicholas A. | Advisor(s): Eskin, Eleazar | Abstract: Over the past two decades, major technological innovations have transformed the field of genetics allowing researchers to examine the relationship between genetic and phenotypic variation at an unprecedented level of granularity. As a result, genetics has increasingly become a data-driven science, demanding effective statistical procedures and efficient computational methods and necessitating a new interface that some refer to as computational genetics. In this dissertation, I focus on a few problems existing within this interface. First, I introduce a method for calculating gene coexpression in a way that is robust to statistical confounding introduced through expression hetero- geneity. Heterogeneity in experimental conditions causes separate microarrays to be more correlated than expected by chance. This additional correlation between arrays induces correlation between gene expression measurements, in effect causing spuri- ous gene coexpression. By formulating the problem of calculating coexpression in a linear mixed-model framework, I show how it is possible to account for the cor- relation between microarrays and produce coexpression values that are robust to ex- pression heterogeneity. Second, I introduce a meta-analysis technique that allows for genome-wide association studies to be combined across populations that are known to contain population structure. This development was motivated by a specific problem in mouse genetics, the aim of which is to utilize multiple mouse association studies jointly. I show that by combining the studies using meta-analysis, while accounting for population structure, the proposed method achieves increased statistical power and increased association resolution. Next, I will introduce a computational and statistical procedure for performing genome-wide association using longitudinal measurements. I show that by accounting for the genetic and environmental correlation between mea- surements originating from the same individual, it is possible to increase association power. Finally, I will introduce a statistical and computational construct called the matrix-variate linear mixed-model (mvLMM), which is used for multiple phenotype genome-wide association. I show how the application of this method results in increased association power over single trait mapping and leads to a dramatic reduction in computational time over classical multiple phenotype optimization procedures. For example, where a classically-based approach takes hours to perform parameter optimization for moderate sample sizes mvLMM takes minutes. This technique is both a generalization and improvement on the previously proposed longitudinal analysis technique and its innovation has the potential to impact many current problems in the field of computational genetics." @default.
- W220383762 created "2016-06-24" @default.
- W220383762 creator A5039220102 @default.
- W220383762 date "2013-01-01" @default.
- W220383762 modified "2023-09-23" @default.
- W220383762 title "Computational Genetic Approaches for the Dissection of Complex Traits" @default.
- W220383762 cites W1499429275 @default.
- W220383762 cites W1565240145 @default.
- W220383762 cites W1853535253 @default.
- W220383762 cites W191324832 @default.
- W220383762 cites W1953115585 @default.
- W220383762 cites W1969151189 @default.
- W220383762 cites W1973455222 @default.
- W220383762 cites W1974443530 @default.
- W220383762 cites W1976587387 @default.
- W220383762 cites W1978215768 @default.
- W220383762 cites W1979920137 @default.
- W220383762 cites W1980168725 @default.
- W220383762 cites W1980991473 @default.
- W220383762 cites W1982585616 @default.
- W220383762 cites W1995123460 @default.
- W220383762 cites W1996570221 @default.
- W220383762 cites W1998306498 @default.
- W220383762 cites W2000941677 @default.
- W220383762 cites W2007563785 @default.
- W220383762 cites W2010527111 @default.
- W220383762 cites W2011411178 @default.
- W220383762 cites W2013196115 @default.
- W220383762 cites W2016738793 @default.
- W220383762 cites W2016799976 @default.
- W220383762 cites W2018937463 @default.
- W220383762 cites W2021708309 @default.
- W220383762 cites W2023289636 @default.
- W220383762 cites W2024103316 @default.
- W220383762 cites W2038225430 @default.
- W220383762 cites W2042421957 @default.
- W220383762 cites W2044686430 @default.
- W220383762 cites W2050499823 @default.
- W220383762 cites W2064279221 @default.
- W220383762 cites W2069325628 @default.
- W220383762 cites W2071759640 @default.
- W220383762 cites W2073839243 @default.
- W220383762 cites W2079927753 @default.
- W220383762 cites W2082246284 @default.
- W220383762 cites W2085458327 @default.
- W220383762 cites W2086021638 @default.
- W220383762 cites W2088486634 @default.
- W220383762 cites W2094248448 @default.
- W220383762 cites W2096916467 @default.
- W220383762 cites W2098143048 @default.
- W220383762 cites W2099086736 @default.
- W220383762 cites W2100730076 @default.
- W220383762 cites W2102751249 @default.
- W220383762 cites W21072975 @default.
- W220383762 cites W2107665951 @default.
- W220383762 cites W2108830997 @default.
- W220383762 cites W2112044524 @default.
- W220383762 cites W2119067354 @default.
- W220383762 cites W2124408199 @default.
- W220383762 cites W2127601863 @default.
- W220383762 cites W2127684760 @default.
- W220383762 cites W2129150286 @default.
- W220383762 cites W2130410032 @default.
- W220383762 cites W2134036574 @default.
- W220383762 cites W2137499573 @default.
- W220383762 cites W2137786672 @default.
- W220383762 cites W2141088880 @default.
- W220383762 cites W2144935194 @default.
- W220383762 cites W2155635136 @default.
- W220383762 cites W2157507785 @default.
- W220383762 cites W2158036994 @default.
- W220383762 cites W2158170196 @default.
- W220383762 cites W2158534900 @default.
- W220383762 cites W2159561933 @default.
- W220383762 cites W2160138207 @default.
- W220383762 cites W2161527180 @default.
- W220383762 cites W2162142896 @default.
- W220383762 cites W2164835383 @default.
- W220383762 cites W2167638767 @default.
- W220383762 cites W2169294950 @default.
- W220383762 cites W2172065026 @default.
- W220383762 cites W2180688179 @default.
- W220383762 cites W3105250094 @default.
- W220383762 cites W403953909 @default.
- W220383762 hasPublicationYear "2013" @default.
- W220383762 type Work @default.
- W220383762 sameAs 220383762 @default.
- W220383762 citedByCount "0" @default.
- W220383762 crossrefType "journal-article" @default.
- W220383762 hasAuthorship W220383762A5039220102 @default.
- W220383762 hasConcept C104317684 @default.
- W220383762 hasConcept C105795698 @default.
- W220383762 hasConcept C117220453 @default.
- W220383762 hasConcept C124101348 @default.
- W220383762 hasConcept C135763542 @default.
- W220383762 hasConcept C150194340 @default.
- W220383762 hasConcept C153209595 @default.
- W220383762 hasConcept C186413461 @default.
- W220383762 hasConcept C2524010 @default.
- W220383762 hasConcept C2908647359 @default.