Matches in SemOpenAlex for { <https://semopenalex.org/work/W2204076503> ?p ?o ?g. }
Showing items 1 to 38 of
38
with 100 items per page.
- W2204076503 abstract "This thesis is in the context of representation theory of finite groups. More specifically, it studies biset functors. In this thesis, I focus on two biset functors: the Burnside functor and the functor of p-permutation modules. For the Burnside functor we first give a result that characterize some B-groups; B-groups being the essential ingredient in the classification of composition factors of the Burnside functor. The second result compares the Burnside functor and the functor of free modules. Note that the functor of free modules is not a biset functor since the inflation of a free module is not necessarily free. To compare those functors we will work on an adjunction between the category of biset functors and the category of functors that do not have inflation. An aspect of the work done on the functor of p-permutation module is to compare the functor of p-permutation modules and the functor of ordinary representations. On the other hand, because of the classification of p-permutation modules, we try to express the functor o p-permutation modules in terms of the functor of projective modules (which is not a biset functor). We will use an adjunction between the category of biset functors and a category that contains the functor of projective modules." @default.
- W2204076503 created "2016-06-24" @default.
- W2204076503 creator A5017523986 @default.
- W2204076503 date "2015-01-01" @default.
- W2204076503 modified "2023-09-23" @default.
- W2204076503 title "Sur quelques foncteurs de bi-ensembles" @default.
- W2204076503 doi "https://doi.org/10.5075/epfl-thesis-6753" @default.
- W2204076503 hasPublicationYear "2015" @default.
- W2204076503 type Work @default.
- W2204076503 sameAs 2204076503 @default.
- W2204076503 citedByCount "0" @default.
- W2204076503 crossrefType "journal-article" @default.
- W2204076503 hasAuthorship W2204076503A5017523986 @default.
- W2204076503 hasConcept C153778094 @default.
- W2204076503 hasConcept C155996607 @default.
- W2204076503 hasConcept C156772000 @default.
- W2204076503 hasConcept C202444582 @default.
- W2204076503 hasConcept C33464968 @default.
- W2204076503 hasConcept C33923547 @default.
- W2204076503 hasConcept C48808802 @default.
- W2204076503 hasConcept C6778880 @default.
- W2204076503 hasConcept C99633028 @default.
- W2204076503 hasConceptScore W2204076503C153778094 @default.
- W2204076503 hasConceptScore W2204076503C155996607 @default.
- W2204076503 hasConceptScore W2204076503C156772000 @default.
- W2204076503 hasConceptScore W2204076503C202444582 @default.
- W2204076503 hasConceptScore W2204076503C33464968 @default.
- W2204076503 hasConceptScore W2204076503C33923547 @default.
- W2204076503 hasConceptScore W2204076503C48808802 @default.
- W2204076503 hasConceptScore W2204076503C6778880 @default.
- W2204076503 hasConceptScore W2204076503C99633028 @default.
- W2204076503 hasLocation W22040765031 @default.
- W2204076503 hasOpenAccess W2204076503 @default.
- W2204076503 hasPrimaryLocation W22040765031 @default.
- W2204076503 isParatext "false" @default.
- W2204076503 isRetracted "false" @default.
- W2204076503 magId "2204076503" @default.
- W2204076503 workType "article" @default.