Matches in SemOpenAlex for { <https://semopenalex.org/work/W2204076875> ?p ?o ?g. }
- W2204076875 abstract "Background: Datasets consisting of synthetic neural data generated with quantifiable and controlled parameters are a valuable asset in the process of testing and validating directed connectivity metrics. Considering the recent debate in the neuroimaging community concerning the use of directed functional connectivity metrics for fMRI data, synthetic datasets that emulate BOLD dynamics have played a central role by supporting claims that argue in favor, or against, certain metrics. Generative models often used in studies that simulate neuronal activity, with the aim of gaining insight into specific brain regions and functions, have different requirements from the generative models for benchmarking datasets. Even though the latter must be realistic, there is a tradeoff between realism and computational demand that needs to be contemplated and simulations that efficiently mimic the real behavior of single neurons or neuronal populations are preferred, instead of more cumbersome and marginally precise ones. Methods: this work explores how simple generative models are able to produce neuronal datasets, for benchmarking purposes, that reflect the simulated effective connectivity and, how these can be used to obtain synthetic recordings of EEG and fMRI BOLD. The generative models covered here are AR processes, neural mass models consisting of linear and non-linear stochastic differential equations and populations with thousands of spiking units. Forward models for EEG consist in the simple three-shell head model while fMRI BOLD is modeled with the Balloon-Windkessel model or by convolution with a hemodynamic response function. Results: the simulated datasets are tested for causality with the original spectral formulation for Granger causality. Modeled effective connectivity can be detected in the generated data for varying connection strengths and interaction delays. Discussion: all generative models produce synthetic neuronal data with detectable causal effects although the relation between modeled and detected causality varies and less biophysically realistic models offer more control in causal relations such as modeled strength and frequency location." @default.
- W2204076875 created "2016-06-24" @default.
- W2204076875 creator A5011466168 @default.
- W2204076875 creator A5031717178 @default.
- W2204076875 date "2014-12-19" @default.
- W2204076875 modified "2023-09-27" @default.
- W2204076875 title "Synthetic neuronal datasets for benchmarking directed connectivity metrics" @default.
- W2204076875 cites W111157985 @default.
- W2204076875 cites W1575104486 @default.
- W2204076875 cites W1964769652 @default.
- W2204076875 cites W1965411365 @default.
- W2204076875 cites W1968187292 @default.
- W2204076875 cites W1978520484 @default.
- W2204076875 cites W1980216691 @default.
- W2204076875 cites W1983523765 @default.
- W2204076875 cites W2004416535 @default.
- W2204076875 cites W2005644553 @default.
- W2204076875 cites W2007983873 @default.
- W2204076875 cites W2012423033 @default.
- W2204076875 cites W2014502281 @default.
- W2204076875 cites W2018963127 @default.
- W2204076875 cites W2021768951 @default.
- W2204076875 cites W2023487677 @default.
- W2204076875 cites W2025371899 @default.
- W2204076875 cites W2027793973 @default.
- W2204076875 cites W2028199062 @default.
- W2204076875 cites W2053595213 @default.
- W2204076875 cites W2058227754 @default.
- W2204076875 cites W2059238825 @default.
- W2204076875 cites W2067707616 @default.
- W2204076875 cites W2068765647 @default.
- W2204076875 cites W2071714163 @default.
- W2204076875 cites W207752236 @default.
- W2204076875 cites W2078254485 @default.
- W2204076875 cites W2082371233 @default.
- W2204076875 cites W2082906925 @default.
- W2204076875 cites W2088404833 @default.
- W2204076875 cites W2112709449 @default.
- W2204076875 cites W2113191728 @default.
- W2204076875 cites W2113431893 @default.
- W2204076875 cites W2118604203 @default.
- W2204076875 cites W2121742207 @default.
- W2204076875 cites W2123191052 @default.
- W2204076875 cites W2131729872 @default.
- W2204076875 cites W2136562407 @default.
- W2204076875 cites W2138905229 @default.
- W2204076875 cites W2142635246 @default.
- W2204076875 cites W2147933447 @default.
- W2204076875 cites W2149153247 @default.
- W2204076875 cites W2157239334 @default.
- W2204076875 cites W2164653071 @default.
- W2204076875 cites W2165117638 @default.
- W2204076875 cites W2168175751 @default.
- W2204076875 cites W2170527455 @default.
- W2204076875 cites W2178225550 @default.
- W2204076875 cites W3149745985 @default.
- W2204076875 cites W70859813 @default.
- W2204076875 doi "https://doi.org/10.7287/peerj.preprints.737v1" @default.
- W2204076875 hasPublicationYear "2014" @default.
- W2204076875 type Work @default.
- W2204076875 sameAs 2204076875 @default.
- W2204076875 citedByCount "0" @default.
- W2204076875 crossrefType "posted-content" @default.
- W2204076875 hasAuthorship W2204076875A5011466168 @default.
- W2204076875 hasAuthorship W2204076875A5031717178 @default.
- W2204076875 hasBestOaLocation W22040768751 @default.
- W2204076875 hasConcept C119857082 @default.
- W2204076875 hasConcept C13280743 @default.
- W2204076875 hasConcept C144133560 @default.
- W2204076875 hasConcept C154945302 @default.
- W2204076875 hasConcept C160920958 @default.
- W2204076875 hasConcept C162853370 @default.
- W2204076875 hasConcept C167966045 @default.
- W2204076875 hasConcept C185798385 @default.
- W2204076875 hasConcept C205649164 @default.
- W2204076875 hasConcept C39890363 @default.
- W2204076875 hasConcept C41008148 @default.
- W2204076875 hasConcept C86251818 @default.
- W2204076875 hasConceptScore W2204076875C119857082 @default.
- W2204076875 hasConceptScore W2204076875C13280743 @default.
- W2204076875 hasConceptScore W2204076875C144133560 @default.
- W2204076875 hasConceptScore W2204076875C154945302 @default.
- W2204076875 hasConceptScore W2204076875C160920958 @default.
- W2204076875 hasConceptScore W2204076875C162853370 @default.
- W2204076875 hasConceptScore W2204076875C167966045 @default.
- W2204076875 hasConceptScore W2204076875C185798385 @default.
- W2204076875 hasConceptScore W2204076875C205649164 @default.
- W2204076875 hasConceptScore W2204076875C39890363 @default.
- W2204076875 hasConceptScore W2204076875C41008148 @default.
- W2204076875 hasConceptScore W2204076875C86251818 @default.
- W2204076875 hasLocation W22040768751 @default.
- W2204076875 hasLocation W22040768752 @default.
- W2204076875 hasOpenAccess W2204076875 @default.
- W2204076875 hasPrimaryLocation W22040768751 @default.
- W2204076875 hasRelatedWork W1994826718 @default.
- W2204076875 hasRelatedWork W2012674725 @default.
- W2204076875 hasRelatedWork W2043771676 @default.
- W2204076875 hasRelatedWork W2086788619 @default.
- W2204076875 hasRelatedWork W2118470640 @default.
- W2204076875 hasRelatedWork W2129621723 @default.