Matches in SemOpenAlex for { <https://semopenalex.org/work/W2204599701> ?p ?o ?g. }
- W2204599701 endingPage "251" @default.
- W2204599701 startingPage "245" @default.
- W2204599701 abstract "Objective Adverse drug reaction (ADR) can have dire consequences. However, our current understanding of the causes of drug-induced toxicity is still limited. Hence it is of paramount importance to determine molecular factors of adverse drug responses so that safer therapies can be designed. Methods We propose a causality analysis model based on structure learning (CASTLE) for identifying factors that contribute significantly to ADRs from an integration of chemical and biological properties of drugs. This study aims to address two major limitations of the existing ADR prediction studies. First, ADR prediction is mostly performed by assessing the correlations between the input features and ADRs, and the identified associations may not indicate causal relations. Second, most predictive models lack biological interpretability. Results CASTLE was evaluated in terms of prediction accuracy on 12 organ-specific ADRs using 830 approved drugs. The prediction was carried out by first extracting causal features with structure learning and then applying them to a support vector machine (SVM) for classification. Through rigorous experimental analyses, we observed significant increases in both macro and micro F1 scores compared with the traditional SVM classifier, from 0.88 to 0.89 and 0.74 to 0.81, respectively. Most importantly, identified links between the biological factors and organ-specific drug toxicities were partially supported by evidence in Online Mendelian Inheritance in Man. Conclusions The proposed CASTLE model not only performed better in prediction than the baseline SVM but also produced more interpretable results (ie, biological factors responsible for ADRs), which is critical to discovering molecular activators of ADRs." @default.
- W2204599701 created "2016-06-24" @default.
- W2204599701 creator A5011689338 @default.
- W2204599701 creator A5019112889 @default.
- W2204599701 creator A5027058293 @default.
- W2204599701 creator A5052779340 @default.
- W2204599701 creator A5076948208 @default.
- W2204599701 creator A5084072550 @default.
- W2204599701 creator A5086685216 @default.
- W2204599701 date "2014-03-01" @default.
- W2204599701 modified "2023-10-16" @default.
- W2204599701 title "Determining molecular predictors of adverse drug reactions with causality analysis based on structure learning" @default.
- W2204599701 cites W1604547439 @default.
- W2204599701 cites W1969879564 @default.
- W2204599701 cites W1980409763 @default.
- W2204599701 cites W1981547652 @default.
- W2204599701 cites W1997453506 @default.
- W2204599701 cites W2000127653 @default.
- W2204599701 cites W2001565801 @default.
- W2204599701 cites W2002251109 @default.
- W2204599701 cites W2009313526 @default.
- W2204599701 cites W2009814207 @default.
- W2204599701 cites W2035731137 @default.
- W2204599701 cites W2036134181 @default.
- W2204599701 cites W2037171637 @default.
- W2204599701 cites W2040135138 @default.
- W2204599701 cites W2042511069 @default.
- W2204599701 cites W2044542784 @default.
- W2204599701 cites W2049946556 @default.
- W2204599701 cites W2056519407 @default.
- W2204599701 cites W2060192843 @default.
- W2204599701 cites W2063928888 @default.
- W2204599701 cites W2067679534 @default.
- W2204599701 cites W2070562133 @default.
- W2204599701 cites W2070789802 @default.
- W2204599701 cites W2074192927 @default.
- W2204599701 cites W2075192764 @default.
- W2204599701 cites W2075455619 @default.
- W2204599701 cites W2080886752 @default.
- W2204599701 cites W2085752173 @default.
- W2204599701 cites W2088263677 @default.
- W2204599701 cites W2109906713 @default.
- W2204599701 cites W2110412254 @default.
- W2204599701 cites W2115763439 @default.
- W2204599701 cites W2117007075 @default.
- W2204599701 cites W2120009105 @default.
- W2204599701 cites W2122282520 @default.
- W2204599701 cites W2124012426 @default.
- W2204599701 cites W2124289434 @default.
- W2204599701 cites W2127385343 @default.
- W2204599701 cites W2135306073 @default.
- W2204599701 cites W2136127280 @default.
- W2204599701 cites W2136262469 @default.
- W2204599701 cites W2137052779 @default.
- W2204599701 cites W2138995863 @default.
- W2204599701 cites W2139516171 @default.
- W2204599701 cites W2140524184 @default.
- W2204599701 cites W2140728274 @default.
- W2204599701 cites W2142572836 @default.
- W2204599701 cites W2148303708 @default.
- W2204599701 cites W2153635508 @default.
- W2204599701 cites W2154896031 @default.
- W2204599701 cites W2159583324 @default.
- W2204599701 cites W2164327527 @default.
- W2204599701 cites W2165674132 @default.
- W2204599701 cites W2170146596 @default.
- W2204599701 cites W2171437346 @default.
- W2204599701 cites W4247670289 @default.
- W2204599701 cites W4256008253 @default.
- W2204599701 cites W4294216483 @default.
- W2204599701 cites W4294541781 @default.
- W2204599701 cites W4302423442 @default.
- W2204599701 doi "https://doi.org/10.1136/amiajnl-2013-002051" @default.
- W2204599701 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3932464" @default.
- W2204599701 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24334612" @default.
- W2204599701 hasPublicationYear "2014" @default.
- W2204599701 type Work @default.
- W2204599701 sameAs 2204599701 @default.
- W2204599701 citedByCount "31" @default.
- W2204599701 countsByYear W22045997012014 @default.
- W2204599701 countsByYear W22045997012015 @default.
- W2204599701 countsByYear W22045997012016 @default.
- W2204599701 countsByYear W22045997012017 @default.
- W2204599701 countsByYear W22045997012018 @default.
- W2204599701 countsByYear W22045997012019 @default.
- W2204599701 countsByYear W22045997012020 @default.
- W2204599701 countsByYear W22045997012021 @default.
- W2204599701 countsByYear W22045997012022 @default.
- W2204599701 countsByYear W22045997012023 @default.
- W2204599701 crossrefType "journal-article" @default.
- W2204599701 hasAuthorship W2204599701A5011689338 @default.
- W2204599701 hasAuthorship W2204599701A5019112889 @default.
- W2204599701 hasAuthorship W2204599701A5027058293 @default.
- W2204599701 hasAuthorship W2204599701A5052779340 @default.
- W2204599701 hasAuthorship W2204599701A5076948208 @default.
- W2204599701 hasAuthorship W2204599701A5084072550 @default.
- W2204599701 hasAuthorship W2204599701A5086685216 @default.
- W2204599701 hasBestOaLocation W22045997011 @default.