Matches in SemOpenAlex for { <https://semopenalex.org/work/W2204788911> ?p ?o ?g. }
- W2204788911 endingPage "1280" @default.
- W2204788911 startingPage "1268" @default.
- W2204788911 abstract "Abstract The present work provides an investigation of the technical and economic feasibility of integrating Concentrating Solar Power (CSP) technologies with cogeneration gas turbine systems that are progressively being installed in Saudi Arabia to produce electricity and steam. In this regard, different designs of hybrid solar/fossil fuel gas turbine cogeneration systems have been proposed. The proposed designs consider the possible integration of three main Concentrating Solar Power (CSP) technologies, which are namely, Solar Tower (ST) systems, Parabolic Trough Collector (PTC) system, and Linear Fresnel Reflector (LFR) systems with conventional gas turbine cogeneration systems. These three CSP technologies were assessed for possible integration with a gas turbine cogeneration system that generates steam at a constant flow rate of 81.44 kg/s at P = 45.88 (bar) and temperature of T = 394 °C throughout the year in addition to the generation of electricity. THERMOFLEX with PEACE simulation software has been used to assess the performance of the integrated solar gas turbine cogeneration with three different CSP technologies for different gas turbine sizes under Dhahran weather conditions. The three CSP technologies to be integrated individually to the gas turbine cogeneration plant are; parabolic trough collectors and linear Fresnel reflectors to the steam side and the solar tower to the gas side of the plant. Thermo-economic comparative analysis have been conducted for all possible configurations of the integrated solar gas turbine cogeneration plant to reach at the optimal levelized electricity cost (LEC). The optimization process also includes CO 2 emissions for each integrated solar gas turbine cogeneration plant (ISGCP) configuration for each the three CSP technologies in comparison with the integration of CO 2 capture technology to the conventional plant. The simulation results revealed that the optimal configuration is the integration of LFR with the steam side of a gas turbine cogeneration plant of 50 MWe, which gives a LEC of 5.1 USȻ/kW h with 119 k ton reduction of the annual CO 2 emission. Moreover, the results indicate that the proper location to apply optimal integration configuration in Saudi Arabia is at Jazan city." @default.
- W2204788911 created "2016-06-24" @default.
- W2204788911 creator A5006992337 @default.
- W2204788911 creator A5042034742 @default.
- W2204788911 creator A5049150717 @default.
- W2204788911 date "2017-01-01" @default.
- W2204788911 modified "2023-10-17" @default.
- W2204788911 title "Optimal integration of solar energy with fossil fuel gas turbine cogeneration plants using three different CSP technologies in Saudi Arabia" @default.
- W2204788911 cites W1963692508 @default.
- W2204788911 cites W1966830175 @default.
- W2204788911 cites W1972341533 @default.
- W2204788911 cites W1978891823 @default.
- W2204788911 cites W1984229939 @default.
- W2204788911 cites W1984269365 @default.
- W2204788911 cites W1984558231 @default.
- W2204788911 cites W1984694145 @default.
- W2204788911 cites W1984982182 @default.
- W2204788911 cites W1986179469 @default.
- W2204788911 cites W1987131938 @default.
- W2204788911 cites W1989505740 @default.
- W2204788911 cites W1992380090 @default.
- W2204788911 cites W1994659701 @default.
- W2204788911 cites W1995171724 @default.
- W2204788911 cites W1998146063 @default.
- W2204788911 cites W2006287196 @default.
- W2204788911 cites W2009855182 @default.
- W2204788911 cites W2012273177 @default.
- W2204788911 cites W2014487590 @default.
- W2204788911 cites W2015453136 @default.
- W2204788911 cites W2030403642 @default.
- W2204788911 cites W2032890855 @default.
- W2204788911 cites W2035626485 @default.
- W2204788911 cites W2037497190 @default.
- W2204788911 cites W2039354048 @default.
- W2204788911 cites W2039619909 @default.
- W2204788911 cites W2053497650 @default.
- W2204788911 cites W2055700355 @default.
- W2204788911 cites W2061959684 @default.
- W2204788911 cites W2063210767 @default.
- W2204788911 cites W2066124353 @default.
- W2204788911 cites W2071045085 @default.
- W2204788911 cites W2079645420 @default.
- W2204788911 cites W2083442569 @default.
- W2204788911 cites W2084775330 @default.
- W2204788911 cites W2090241924 @default.
- W2204788911 cites W2094925805 @default.
- W2204788911 cites W2095336497 @default.
- W2204788911 cites W2113888014 @default.
- W2204788911 cites W2129349646 @default.
- W2204788911 cites W2157319760 @default.
- W2204788911 cites W2166319150 @default.
- W2204788911 cites W3125985163 @default.
- W2204788911 cites W98367298 @default.
- W2204788911 doi "https://doi.org/10.1016/j.apenergy.2015.12.029" @default.
- W2204788911 hasPublicationYear "2017" @default.
- W2204788911 type Work @default.
- W2204788911 sameAs 2204788911 @default.
- W2204788911 citedByCount "64" @default.
- W2204788911 countsByYear W22047889112016 @default.
- W2204788911 countsByYear W22047889112017 @default.
- W2204788911 countsByYear W22047889112018 @default.
- W2204788911 countsByYear W22047889112019 @default.
- W2204788911 countsByYear W22047889112020 @default.
- W2204788911 countsByYear W22047889112021 @default.
- W2204788911 countsByYear W22047889112022 @default.
- W2204788911 countsByYear W22047889112023 @default.
- W2204788911 crossrefType "journal-article" @default.
- W2204788911 hasAuthorship W2204788911A5006992337 @default.
- W2204788911 hasAuthorship W2204788911A5042034742 @default.
- W2204788911 hasAuthorship W2204788911A5049150717 @default.
- W2204788911 hasConcept C119599485 @default.
- W2204788911 hasConcept C121332964 @default.
- W2204788911 hasConcept C127413603 @default.
- W2204788911 hasConcept C163258240 @default.
- W2204788911 hasConcept C188573790 @default.
- W2204788911 hasConcept C21880701 @default.
- W2204788911 hasConcept C2776756539 @default.
- W2204788911 hasConcept C2987684023 @default.
- W2204788911 hasConcept C39432304 @default.
- W2204788911 hasConcept C423512 @default.
- W2204788911 hasConcept C541104983 @default.
- W2204788911 hasConcept C548081761 @default.
- W2204788911 hasConcept C62520636 @default.
- W2204788911 hasConcept C68189081 @default.
- W2204788911 hasConcept C78519656 @default.
- W2204788911 hasConceptScore W2204788911C119599485 @default.
- W2204788911 hasConceptScore W2204788911C121332964 @default.
- W2204788911 hasConceptScore W2204788911C127413603 @default.
- W2204788911 hasConceptScore W2204788911C163258240 @default.
- W2204788911 hasConceptScore W2204788911C188573790 @default.
- W2204788911 hasConceptScore W2204788911C21880701 @default.
- W2204788911 hasConceptScore W2204788911C2776756539 @default.
- W2204788911 hasConceptScore W2204788911C2987684023 @default.
- W2204788911 hasConceptScore W2204788911C39432304 @default.
- W2204788911 hasConceptScore W2204788911C423512 @default.
- W2204788911 hasConceptScore W2204788911C541104983 @default.
- W2204788911 hasConceptScore W2204788911C548081761 @default.
- W2204788911 hasConceptScore W2204788911C62520636 @default.