Matches in SemOpenAlex for { <https://semopenalex.org/work/W2205205575> ?p ?o ?g. }
- W2205205575 endingPage "522" @default.
- W2205205575 startingPage "515" @default.
- W2205205575 abstract "Summary Annual sulfate mass balances have been constructed for four low-lying peat polders in the Netherlands, to resolve the origin of high sulfate concentrations in surface water, which is considered a water quality problem, as indicated amongst others by the absence of sensitive water plant species. Potential limitation of these plants to areas with low sulfate was analyzed with a spatial match-up of two large databases. The peat polders are generally used for dairy farming or nature conservation, and have considerable areas of shallow surface water (mean 16%, range 6–43%). As a consequence of continuous drainage, the peat in these polders mineralizes causing subsidence rates generally ranging between 2 and 10 mm y−1. Together with pyrite oxidation, this peat mineralization the most important internal source of sulfate, providing an estimated 96 kg SO4 ha−1 mm−1 subsidence y−1. External sources are precipitation and water supplied during summer to compensate for water shortage, but these were found to be minor compared to internal release. The most important output flux is discharge of excess surface water during autumn and winter. If only external fluxes in and out of a polder are evaluated, inputs average 37 ± 9 and exports 169 ± 17 kg S ha−1 y−1. During summer, when evapotranspiration exceeds rainfall, sulfate accumulates in the unsaturated zone, to be flushed away and drained off during the wet autumn and winter. In some polders, upward seepage from early Holocene, brackish sediments can be a source of sulfate. Peat polders export sulfate to the regional water system and the sea during winter drainage. The available sulfate probably only plays a minor role in the oxidation of peat: we estimate that this is less than 10% whereas aerobic mineralization is the most important. Most surface waters in these polders have high sulfate concentrations, which generally decline during the growing season when aquatic sediments are a sink. In the sediment, this sulfur is reduced and binds iron more strongly than phosphorus, which can be released to the overlying water and potentially fuels eutrophication. About 76% of the sampled vegetation-sites exceeded a threshold of 50 mg l−1 SO4, above which sensitive species, such as Stratiotes aloides, and several species of Potamogeton were significantly less abundant. Thus high sulfate concentrations, mainly due to land drainage and consequent mineralization, appear to affect aquatic plant community composition." @default.
- W2205205575 created "2016-06-24" @default.
- W2205205575 creator A5017147732 @default.
- W2205205575 creator A5017461176 @default.
- W2205205575 creator A5019306027 @default.
- W2205205575 creator A5021588550 @default.
- W2205205575 creator A5025422393 @default.
- W2205205575 creator A5032374521 @default.
- W2205205575 creator A5041243463 @default.
- W2205205575 creator A5059282539 @default.
- W2205205575 creator A5061004706 @default.
- W2205205575 creator A5069707445 @default.
- W2205205575 date "2016-02-01" @default.
- W2205205575 modified "2023-09-26" @default.
- W2205205575 title "Annual sulfate budgets for Dutch lowland peat polders: The soil is a major sulfate source through peat and pyrite oxidation" @default.
- W2205205575 cites W1969270424 @default.
- W2205205575 cites W1971743367 @default.
- W2205205575 cites W1973652252 @default.
- W2205205575 cites W1973660190 @default.
- W2205205575 cites W1977428061 @default.
- W2205205575 cites W1997186194 @default.
- W2205205575 cites W1999738988 @default.
- W2205205575 cites W2003012448 @default.
- W2205205575 cites W2013115487 @default.
- W2205205575 cites W2028001667 @default.
- W2205205575 cites W2034286176 @default.
- W2205205575 cites W2040247847 @default.
- W2205205575 cites W2041547295 @default.
- W2205205575 cites W2042413959 @default.
- W2205205575 cites W2049866359 @default.
- W2205205575 cites W2069900602 @default.
- W2205205575 cites W2075558579 @default.
- W2205205575 cites W2083364577 @default.
- W2205205575 cites W2084568135 @default.
- W2205205575 cites W2089263508 @default.
- W2205205575 cites W2101847691 @default.
- W2205205575 cites W2104394650 @default.
- W2205205575 cites W2112070508 @default.
- W2205205575 cites W2125158928 @default.
- W2205205575 cites W2137574014 @default.
- W2205205575 cites W2144664789 @default.
- W2205205575 cites W2146441137 @default.
- W2205205575 cites W2155386521 @default.
- W2205205575 cites W2162711559 @default.
- W2205205575 cites W2164457653 @default.
- W2205205575 cites W2165490764 @default.
- W2205205575 cites W2169173472 @default.
- W2205205575 doi "https://doi.org/10.1016/j.jhydrol.2015.12.038" @default.
- W2205205575 hasPublicationYear "2016" @default.
- W2205205575 type Work @default.
- W2205205575 sameAs 2205205575 @default.
- W2205205575 citedByCount "7" @default.
- W2205205575 countsByYear W22052055752017 @default.
- W2205205575 countsByYear W22052055752019 @default.
- W2205205575 countsByYear W22052055752020 @default.
- W2205205575 countsByYear W22052055752021 @default.
- W2205205575 countsByYear W22052055752022 @default.
- W2205205575 countsByYear W22052055752023 @default.
- W2205205575 crossrefType "journal-article" @default.
- W2205205575 hasAuthorship W2205205575A5017147732 @default.
- W2205205575 hasAuthorship W2205205575A5017461176 @default.
- W2205205575 hasAuthorship W2205205575A5019306027 @default.
- W2205205575 hasAuthorship W2205205575A5021588550 @default.
- W2205205575 hasAuthorship W2205205575A5025422393 @default.
- W2205205575 hasAuthorship W2205205575A5032374521 @default.
- W2205205575 hasAuthorship W2205205575A5041243463 @default.
- W2205205575 hasAuthorship W2205205575A5059282539 @default.
- W2205205575 hasAuthorship W2205205575A5061004706 @default.
- W2205205575 hasAuthorship W2205205575A5069707445 @default.
- W2205205575 hasConcept C107872376 @default.
- W2205205575 hasConcept C127313418 @default.
- W2205205575 hasConcept C166957645 @default.
- W2205205575 hasConcept C178790620 @default.
- W2205205575 hasConcept C185592680 @default.
- W2205205575 hasConcept C199289684 @default.
- W2205205575 hasConcept C205649164 @default.
- W2205205575 hasConcept C2776062231 @default.
- W2205205575 hasConcept C2778343803 @default.
- W2205205575 hasConcept C39432304 @default.
- W2205205575 hasConcept C53657456 @default.
- W2205205575 hasConceptScore W2205205575C107872376 @default.
- W2205205575 hasConceptScore W2205205575C127313418 @default.
- W2205205575 hasConceptScore W2205205575C166957645 @default.
- W2205205575 hasConceptScore W2205205575C178790620 @default.
- W2205205575 hasConceptScore W2205205575C185592680 @default.
- W2205205575 hasConceptScore W2205205575C199289684 @default.
- W2205205575 hasConceptScore W2205205575C205649164 @default.
- W2205205575 hasConceptScore W2205205575C2776062231 @default.
- W2205205575 hasConceptScore W2205205575C2778343803 @default.
- W2205205575 hasConceptScore W2205205575C39432304 @default.
- W2205205575 hasConceptScore W2205205575C53657456 @default.
- W2205205575 hasLocation W22052055751 @default.
- W2205205575 hasOpenAccess W2205205575 @default.
- W2205205575 hasPrimaryLocation W22052055751 @default.
- W2205205575 hasRelatedWork W2023553543 @default.
- W2205205575 hasRelatedWork W2085201468 @default.
- W2205205575 hasRelatedWork W2093612991 @default.
- W2205205575 hasRelatedWork W2142678325 @default.