Matches in SemOpenAlex for { <https://semopenalex.org/work/W2205279459> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2205279459 startingPage "510" @default.
- W2205279459 abstract "An important objective in stochastic hydrology is to generate synthetic rainfall and/or stream-flow sequences that have similar statistics and dependence structures to those of the historical record. The generation of these sequences can be particularly challenging in the multivariate setting, where it is necessary to simulate both the spatial and temporal dependence of the original multivariate time series. The approaches that are currently available, such as the multivariate autoregressive models, commonly assume gaussian dependence and, due to the large number of parameters that need to be estimated from relatively short historical records, typically only consider lag-one temporal dependence. Proposed here is a two-step approach to developing synthetic multivariate time series at monthly or longer time scales, which involves firstly applying a transformation to the multivariate data in order to generate a set of statistically independent univariate time series, followed by the application of a univariate time series model to the transformed series. The benefits of the two step approach is that, because the time series models are applied to the univariate case, it is possible to consider a much broader class of parametric or non-parametric autoregressive models. To transform the data, we use a technique known as independent component analysis (ICA), which uses an approximation of mutual information to maximise the independence of the transformed time series, and we compare this with the better-known method of principal components analysis (PCA), which minimises the covariance of the multivariate data. These approaches are evaluated on a monthly multivariate dataset from Colombia, and it is shown that the discrepancy between the synthetically generated multivariate dataset and the original dataset, measured as the mean integrated squared bias (MISB), is reduced by 25% when using ICA for the transformation to univariate series, compared with using PCA. Interestingly, this improvement was not limited to the representation of the joint dependence, with an improvement of 28% observed when considering marginal densities in isolation. These results suggest that when developing models for the synthetic generation of multivariate time series, more emphasis should be placed on higher order statistics so that spatial and temporal dependence is correctly simulated." @default.
- W2205279459 created "2016-06-24" @default.
- W2205279459 creator A5009183134 @default.
- W2205279459 creator A5037258473 @default.
- W2205279459 creator A5049897783 @default.
- W2205279459 creator A5057629910 @default.
- W2205279459 date "2006-01-01" @default.
- W2205279459 modified "2023-09-28" @default.
- W2205279459 title "Stochastic generation of rainfall and streamflow time series at multiple sites using independent component analysis" @default.
- W2205279459 hasPublicationYear "2006" @default.
- W2205279459 type Work @default.
- W2205279459 sameAs 2205279459 @default.
- W2205279459 citedByCount "0" @default.
- W2205279459 crossrefType "journal-article" @default.
- W2205279459 hasAuthorship W2205279459A5009183134 @default.
- W2205279459 hasAuthorship W2205279459A5037258473 @default.
- W2205279459 hasAuthorship W2205279459A5049897783 @default.
- W2205279459 hasAuthorship W2205279459A5057629910 @default.
- W2205279459 hasConcept C105795698 @default.
- W2205279459 hasConcept C117251300 @default.
- W2205279459 hasConcept C143724316 @default.
- W2205279459 hasConcept C149782125 @default.
- W2205279459 hasConcept C151406439 @default.
- W2205279459 hasConcept C151730666 @default.
- W2205279459 hasConcept C159877910 @default.
- W2205279459 hasConcept C161584116 @default.
- W2205279459 hasConcept C178650346 @default.
- W2205279459 hasConcept C199163554 @default.
- W2205279459 hasConcept C27438332 @default.
- W2205279459 hasConcept C33923547 @default.
- W2205279459 hasConcept C41008148 @default.
- W2205279459 hasConcept C86803240 @default.
- W2205279459 hasConceptScore W2205279459C105795698 @default.
- W2205279459 hasConceptScore W2205279459C117251300 @default.
- W2205279459 hasConceptScore W2205279459C143724316 @default.
- W2205279459 hasConceptScore W2205279459C149782125 @default.
- W2205279459 hasConceptScore W2205279459C151406439 @default.
- W2205279459 hasConceptScore W2205279459C151730666 @default.
- W2205279459 hasConceptScore W2205279459C159877910 @default.
- W2205279459 hasConceptScore W2205279459C161584116 @default.
- W2205279459 hasConceptScore W2205279459C178650346 @default.
- W2205279459 hasConceptScore W2205279459C199163554 @default.
- W2205279459 hasConceptScore W2205279459C27438332 @default.
- W2205279459 hasConceptScore W2205279459C33923547 @default.
- W2205279459 hasConceptScore W2205279459C41008148 @default.
- W2205279459 hasConceptScore W2205279459C86803240 @default.
- W2205279459 hasLocation W22052794591 @default.
- W2205279459 hasOpenAccess W2205279459 @default.
- W2205279459 hasPrimaryLocation W22052794591 @default.
- W2205279459 hasRelatedWork W1978534941 @default.
- W2205279459 hasRelatedWork W2064604870 @default.
- W2205279459 hasRelatedWork W2089016853 @default.
- W2205279459 hasRelatedWork W2100756556 @default.
- W2205279459 hasRelatedWork W2101828713 @default.
- W2205279459 hasRelatedWork W2154146447 @default.
- W2205279459 hasRelatedWork W2183275912 @default.
- W2205279459 hasRelatedWork W2394474907 @default.
- W2205279459 hasRelatedWork W2513463714 @default.
- W2205279459 hasRelatedWork W26571036 @default.
- W2205279459 hasRelatedWork W2900631122 @default.
- W2205279459 hasRelatedWork W2901050071 @default.
- W2205279459 hasRelatedWork W2908270071 @default.
- W2205279459 hasRelatedWork W2944163441 @default.
- W2205279459 hasRelatedWork W2952171738 @default.
- W2205279459 hasRelatedWork W2976876159 @default.
- W2205279459 hasRelatedWork W2998812740 @default.
- W2205279459 hasRelatedWork W3195272449 @default.
- W2205279459 hasRelatedWork W54124358 @default.
- W2205279459 hasRelatedWork W168746522 @default.
- W2205279459 isParatext "false" @default.
- W2205279459 isRetracted "false" @default.
- W2205279459 magId "2205279459" @default.
- W2205279459 workType "article" @default.