Matches in SemOpenAlex for { <https://semopenalex.org/work/W2205282167> ?p ?o ?g. }
- W2205282167 endingPage "87" @default.
- W2205282167 startingPage "57" @default.
- W2205282167 abstract "Quantifying rates of microbial carbon transformation in peatlands is essential for gaining mechanistic understanding of the factors that influence methane emissions from these systems, and for predicting how emissions will respond to climate change and other disturbances. In this study, we used porewater stable isotopes collected from both the edge and center of a thermokarst bog in Interior Alaska to estimate in situ microbial reaction rates. We expected that near the edge of the thaw feature, actively thawing permafrost and greater abundance of sedges would increase carbon, oxygen and nutrient availability, enabling faster microbial rates relative to the center of the thaw feature. We developed three different conceptual reaction networks that explained the temporal change in porewater CO2, CH4, δ 13C–CO2 and δ 13C–CH4. All three reaction-network models included methane production, methane oxidation and CO2 production, and two of the models included homoacetogenesis—a reaction not previously included in isotope-based porewater models. All three models fit the data equally well, but rates resulting from the models differed. Most notably, inclusion of homoacetogenesis altered the modeled pathways of methane production when the reaction was directly coupled to methanogenesis, and it decreased gross methane production rates by up to a factor of five when it remained decoupled from methanogenesis. The ability of all three conceptual reaction networks to successfully match the measured data indicate that this technique for estimating in situ reaction rates requires other data and information from the site to confirm the considered set of microbial reactions. Despite these differences, all models indicated that, as expected, rates were greater at the edge than in the center of the thaw bog, that rates at the edge increased more during the growing season than did rates in the center, and that the ratio of acetoclastic to hydrogenotrophic methanogenesis was greater at the edge than in the center. In both locations, modeled rates (excluding methane oxidation) increased with depth. A puzzling outcome from the effort was that none of the models could fit the porewater dataset without generating “fugitive” carbon (i.e., methane or acetate generated by the models but not detected at the field site), indicating that either our conceptualization of the reactions occurring at the site remains incomplete or our site measurements are missing important carbon transformations and/or carbon fluxes. This model–data discrepancy will motivate and inform future research efforts focused on improving our understanding of carbon cycling in permafrost wetlands." @default.
- W2205282167 created "2016-06-24" @default.
- W2205282167 creator A5008083062 @default.
- W2205282167 creator A5011203458 @default.
- W2205282167 creator A5018422134 @default.
- W2205282167 creator A5052441123 @default.
- W2205282167 creator A5071464620 @default.
- W2205282167 date "2015-12-16" @default.
- W2205282167 modified "2023-09-25" @default.
- W2205282167 title "Modeling CH4 and CO2 cycling using porewater stable isotopes in a thermokarst bog in Interior Alaska: results from three conceptual reaction networks" @default.
- W2205282167 cites W1485770559 @default.
- W2205282167 cites W1496871633 @default.
- W2205282167 cites W1523535966 @default.
- W2205282167 cites W1548946056 @default.
- W2205282167 cites W1552456432 @default.
- W2205282167 cites W1556665743 @default.
- W2205282167 cites W1567021589 @default.
- W2205282167 cites W1569180054 @default.
- W2205282167 cites W1580893169 @default.
- W2205282167 cites W1612684269 @default.
- W2205282167 cites W1613287141 @default.
- W2205282167 cites W1680801808 @default.
- W2205282167 cites W1878466131 @default.
- W2205282167 cites W1968585946 @default.
- W2205282167 cites W1974442790 @default.
- W2205282167 cites W1981851600 @default.
- W2205282167 cites W1988454204 @default.
- W2205282167 cites W1989124612 @default.
- W2205282167 cites W1990475244 @default.
- W2205282167 cites W1998787283 @default.
- W2205282167 cites W1999191562 @default.
- W2205282167 cites W2000619947 @default.
- W2205282167 cites W2001481743 @default.
- W2205282167 cites W2008680648 @default.
- W2205282167 cites W2009433255 @default.
- W2205282167 cites W2013055830 @default.
- W2205282167 cites W2020412701 @default.
- W2205282167 cites W2021372054 @default.
- W2205282167 cites W2029745088 @default.
- W2205282167 cites W2032500893 @default.
- W2205282167 cites W2040858974 @default.
- W2205282167 cites W2046116953 @default.
- W2205282167 cites W2053830754 @default.
- W2205282167 cites W2054835895 @default.
- W2205282167 cites W2060374983 @default.
- W2205282167 cites W2062578101 @default.
- W2205282167 cites W2063987912 @default.
- W2205282167 cites W2067680725 @default.
- W2205282167 cites W2070294840 @default.
- W2205282167 cites W2075646929 @default.
- W2205282167 cites W2075720440 @default.
- W2205282167 cites W2077584974 @default.
- W2205282167 cites W2093849305 @default.
- W2205282167 cites W2102797593 @default.
- W2205282167 cites W2104312558 @default.
- W2205282167 cites W2112763863 @default.
- W2205282167 cites W2112930462 @default.
- W2205282167 cites W2118977503 @default.
- W2205282167 cites W2137890403 @default.
- W2205282167 cites W2138732169 @default.
- W2205282167 cites W2143103930 @default.
- W2205282167 cites W2143588774 @default.
- W2205282167 cites W2144162852 @default.
- W2205282167 cites W2145368775 @default.
- W2205282167 cites W2149457446 @default.
- W2205282167 cites W2153813615 @default.
- W2205282167 cites W2155036381 @default.
- W2205282167 cites W2156872309 @default.
- W2205282167 cites W2162081657 @default.
- W2205282167 cites W2162652530 @default.
- W2205282167 cites W2162827680 @default.
- W2205282167 cites W2162966874 @default.
- W2205282167 cites W2169458724 @default.
- W2205282167 cites W2170169831 @default.
- W2205282167 cites W2170577267 @default.
- W2205282167 cites W2171679601 @default.
- W2205282167 cites W2318842066 @default.
- W2205282167 cites W2465023855 @default.
- W2205282167 doi "https://doi.org/10.1007/s10533-015-0168-2" @default.
- W2205282167 hasPublicationYear "2015" @default.
- W2205282167 type Work @default.
- W2205282167 sameAs 2205282167 @default.
- W2205282167 citedByCount "24" @default.
- W2205282167 countsByYear W22052821672016 @default.
- W2205282167 countsByYear W22052821672017 @default.
- W2205282167 countsByYear W22052821672018 @default.
- W2205282167 countsByYear W22052821672019 @default.
- W2205282167 countsByYear W22052821672020 @default.
- W2205282167 countsByYear W22052821672021 @default.
- W2205282167 countsByYear W22052821672022 @default.
- W2205282167 countsByYear W22052821672023 @default.
- W2205282167 crossrefType "journal-article" @default.
- W2205282167 hasAuthorship W2205282167A5008083062 @default.
- W2205282167 hasAuthorship W2205282167A5011203458 @default.
- W2205282167 hasAuthorship W2205282167A5018422134 @default.
- W2205282167 hasAuthorship W2205282167A5052441123 @default.
- W2205282167 hasAuthorship W2205282167A5071464620 @default.
- W2205282167 hasBestOaLocation W22052821672 @default.