Matches in SemOpenAlex for { <https://semopenalex.org/work/W2205619076> ?p ?o ?g. }
- W2205619076 endingPage "131" @default.
- W2205619076 startingPage "117" @default.
- W2205619076 abstract "The statistical analysis of data belonging to Riemannian manifolds is becoming increasingly important in many applications, such as shape analysis, diffusion tensor imaging and the analysis of covariance matrices. In many cases, data are spatially distributed but it is not trivial to take into account spatial dependence in the analysis because of the non linear geometry of the manifold. This work proposes a solution to the problem of spatial prediction for manifold valued data, with a particular focus on the case of positive definite symmetric matrices. Under the hypothesis that the dispersion of the observations on the manifold is not too large, data can be projected on a suitably chosen tangent space, where an additive model can be used to describe the relationship between response variable and covariates. Thus, we generalize classical kriging prediction, dealing with the spatial dependence in this tangent space, where well established Euclidean methods can be used. The proposed kriging prediction is applied to the matrix field of covariances between temperature and precipitation in Quebec, Canada." @default.
- W2205619076 created "2016-06-24" @default.
- W2205619076 creator A5016716189 @default.
- W2205619076 creator A5063994264 @default.
- W2205619076 creator A5065927887 @default.
- W2205619076 date "2016-03-01" @default.
- W2205619076 modified "2023-09-27" @default.
- W2205619076 title "Kriging prediction for manifold-valued random fields" @default.
- W2205619076 cites W1601957988 @default.
- W2205619076 cites W1883380602 @default.
- W2205619076 cites W1964090321 @default.
- W2205619076 cites W1965375054 @default.
- W2205619076 cites W1966493274 @default.
- W2205619076 cites W1969002377 @default.
- W2205619076 cites W1969903564 @default.
- W2205619076 cites W1976117780 @default.
- W2205619076 cites W1983496390 @default.
- W2205619076 cites W1994675040 @default.
- W2205619076 cites W2000791239 @default.
- W2205619076 cites W2003390846 @default.
- W2205619076 cites W2012361823 @default.
- W2205619076 cites W2014279567 @default.
- W2205619076 cites W2033326107 @default.
- W2205619076 cites W2060143287 @default.
- W2205619076 cites W2068787860 @default.
- W2205619076 cites W2072931016 @default.
- W2205619076 cites W2073306601 @default.
- W2205619076 cites W2076423950 @default.
- W2205619076 cites W2079730421 @default.
- W2205619076 cites W2101872040 @default.
- W2205619076 cites W2105158529 @default.
- W2205619076 cites W2105866209 @default.
- W2205619076 cites W2112759033 @default.
- W2205619076 cites W2125949583 @default.
- W2205619076 cites W2164355691 @default.
- W2205619076 cites W2951656971 @default.
- W2205619076 cites W3105007908 @default.
- W2205619076 doi "https://doi.org/10.1016/j.jmva.2015.12.006" @default.
- W2205619076 hasPublicationYear "2016" @default.
- W2205619076 type Work @default.
- W2205619076 sameAs 2205619076 @default.
- W2205619076 citedByCount "15" @default.
- W2205619076 countsByYear W22056190762016 @default.
- W2205619076 countsByYear W22056190762017 @default.
- W2205619076 countsByYear W22056190762018 @default.
- W2205619076 countsByYear W22056190762019 @default.
- W2205619076 countsByYear W22056190762020 @default.
- W2205619076 countsByYear W22056190762021 @default.
- W2205619076 countsByYear W22056190762023 @default.
- W2205619076 crossrefType "journal-article" @default.
- W2205619076 hasAuthorship W2205619076A5016716189 @default.
- W2205619076 hasAuthorship W2205619076A5063994264 @default.
- W2205619076 hasAuthorship W2205619076A5065927887 @default.
- W2205619076 hasBestOaLocation W22056190761 @default.
- W2205619076 hasConcept C105795698 @default.
- W2205619076 hasConcept C109546454 @default.
- W2205619076 hasConcept C119043178 @default.
- W2205619076 hasConcept C12520029 @default.
- W2205619076 hasConcept C127413603 @default.
- W2205619076 hasConcept C130402806 @default.
- W2205619076 hasConcept C134306372 @default.
- W2205619076 hasConcept C138187205 @default.
- W2205619076 hasConcept C154881674 @default.
- W2205619076 hasConcept C155281189 @default.
- W2205619076 hasConcept C157157409 @default.
- W2205619076 hasConcept C159620131 @default.
- W2205619076 hasConcept C169391604 @default.
- W2205619076 hasConcept C178650346 @default.
- W2205619076 hasConcept C186450821 @default.
- W2205619076 hasConcept C195065555 @default.
- W2205619076 hasConcept C202444582 @default.
- W2205619076 hasConcept C2524010 @default.
- W2205619076 hasConcept C2779593128 @default.
- W2205619076 hasConcept C28826006 @default.
- W2205619076 hasConcept C33923547 @default.
- W2205619076 hasConcept C529865628 @default.
- W2205619076 hasConcept C78519656 @default.
- W2205619076 hasConcept C81692654 @default.
- W2205619076 hasConcept C9652623 @default.
- W2205619076 hasConceptScore W2205619076C105795698 @default.
- W2205619076 hasConceptScore W2205619076C109546454 @default.
- W2205619076 hasConceptScore W2205619076C119043178 @default.
- W2205619076 hasConceptScore W2205619076C12520029 @default.
- W2205619076 hasConceptScore W2205619076C127413603 @default.
- W2205619076 hasConceptScore W2205619076C130402806 @default.
- W2205619076 hasConceptScore W2205619076C134306372 @default.
- W2205619076 hasConceptScore W2205619076C138187205 @default.
- W2205619076 hasConceptScore W2205619076C154881674 @default.
- W2205619076 hasConceptScore W2205619076C155281189 @default.
- W2205619076 hasConceptScore W2205619076C157157409 @default.
- W2205619076 hasConceptScore W2205619076C159620131 @default.
- W2205619076 hasConceptScore W2205619076C169391604 @default.
- W2205619076 hasConceptScore W2205619076C178650346 @default.
- W2205619076 hasConceptScore W2205619076C186450821 @default.
- W2205619076 hasConceptScore W2205619076C195065555 @default.
- W2205619076 hasConceptScore W2205619076C202444582 @default.
- W2205619076 hasConceptScore W2205619076C2524010 @default.
- W2205619076 hasConceptScore W2205619076C2779593128 @default.