Matches in SemOpenAlex for { <https://semopenalex.org/work/W2205636404> ?p ?o ?g. }
- W2205636404 endingPage "bav081" @default.
- W2205636404 startingPage "bav081" @default.
- W2205636404 abstract "Biomedical professionals have access to a huge amount of literature, but when they use a search engine, they often have to deal with too many documents to efficiently find the appropriate information in a reasonable time. In this perspective, question-answering (QA) engines are designed to display answers, which were automatically extracted from the retrieved documents. Standard QA engines in literature process a user question, then retrieve relevant documents and finally extract some possible answers out of these documents using various named-entity recognition processes. In our study, we try to answer complex genomics questions, which can be adequately answered only using Gene Ontology (GO) concepts. Such complex answers cannot be found using state-of-the-art dictionary- and redundancy-based QA engines. We compare the effectiveness of two dictionary-based classifiers for extracting correct GO answers from a large set of 100 retrieved abstracts per question. In the same way, we also investigate the power of GOCat, a GO supervised classifier. GOCat exploits the GOA database to propose GO concepts that were annotated by curators for similar abstracts. This approach is called deep QA, as it adds an original classification step, and exploits curated biological data to infer answers, which are not explicitly mentioned in the retrieved documents. We show that for complex answers such as protein functional descriptions, the redundancy phenomenon has a limited effect. Similarly usual dictionary-based approaches are relatively ineffective. In contrast, we demonstrate how existing curated data, beyond information extraction, can be exploited by a supervised classifier, such as GOCat, to massively improve both the quantity and the quality of the answers with a +100% improvement for both recall and precision. Database URL: http://eagl.unige.ch/DeepQA4PA/." @default.
- W2205636404 created "2016-06-24" @default.
- W2205636404 creator A5014365246 @default.
- W2205636404 creator A5017034341 @default.
- W2205636404 creator A5022872913 @default.
- W2205636404 creator A5042384742 @default.
- W2205636404 creator A5064314998 @default.
- W2205636404 creator A5069843378 @default.
- W2205636404 creator A5091440467 @default.
- W2205636404 date "2015-01-01" @default.
- W2205636404 modified "2023-10-01" @default.
- W2205636404 title "Deep Question Answering for protein annotation" @default.
- W2205636404 cites W150922308 @default.
- W2205636404 cites W1923459080 @default.
- W2205636404 cites W1976316416 @default.
- W2205636404 cites W2000431947 @default.
- W2205636404 cites W2061172803 @default.
- W2205636404 cites W2091978351 @default.
- W2205636404 cites W2103017472 @default.
- W2205636404 cites W2114370860 @default.
- W2205636404 cites W2115024484 @default.
- W2205636404 cites W2115150863 @default.
- W2205636404 cites W2132784310 @default.
- W2205636404 cites W2145000359 @default.
- W2205636404 cites W2159065781 @default.
- W2205636404 cites W2159335058 @default.
- W2205636404 cites W31203743 @default.
- W2205636404 doi "https://doi.org/10.1093/database/bav081" @default.
- W2205636404 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4572360" @default.
- W2205636404 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26384372" @default.
- W2205636404 hasPublicationYear "2015" @default.
- W2205636404 type Work @default.
- W2205636404 sameAs 2205636404 @default.
- W2205636404 citedByCount "15" @default.
- W2205636404 countsByYear W22056364042016 @default.
- W2205636404 countsByYear W22056364042017 @default.
- W2205636404 countsByYear W22056364042018 @default.
- W2205636404 countsByYear W22056364042021 @default.
- W2205636404 countsByYear W22056364042023 @default.
- W2205636404 crossrefType "journal-article" @default.
- W2205636404 hasAuthorship W2205636404A5014365246 @default.
- W2205636404 hasAuthorship W2205636404A5017034341 @default.
- W2205636404 hasAuthorship W2205636404A5022872913 @default.
- W2205636404 hasAuthorship W2205636404A5042384742 @default.
- W2205636404 hasAuthorship W2205636404A5064314998 @default.
- W2205636404 hasAuthorship W2205636404A5069843378 @default.
- W2205636404 hasAuthorship W2205636404A5091440467 @default.
- W2205636404 hasBestOaLocation W22056364041 @default.
- W2205636404 hasConcept C111472728 @default.
- W2205636404 hasConcept C111919701 @default.
- W2205636404 hasConcept C138885662 @default.
- W2205636404 hasConcept C152124472 @default.
- W2205636404 hasConcept C154945302 @default.
- W2205636404 hasConcept C165696696 @default.
- W2205636404 hasConcept C195807954 @default.
- W2205636404 hasConcept C204321447 @default.
- W2205636404 hasConcept C23123220 @default.
- W2205636404 hasConcept C25810664 @default.
- W2205636404 hasConcept C2776321320 @default.
- W2205636404 hasConcept C38652104 @default.
- W2205636404 hasConcept C41008148 @default.
- W2205636404 hasConcept C44291984 @default.
- W2205636404 hasConcept C95623464 @default.
- W2205636404 hasConceptScore W2205636404C111472728 @default.
- W2205636404 hasConceptScore W2205636404C111919701 @default.
- W2205636404 hasConceptScore W2205636404C138885662 @default.
- W2205636404 hasConceptScore W2205636404C152124472 @default.
- W2205636404 hasConceptScore W2205636404C154945302 @default.
- W2205636404 hasConceptScore W2205636404C165696696 @default.
- W2205636404 hasConceptScore W2205636404C195807954 @default.
- W2205636404 hasConceptScore W2205636404C204321447 @default.
- W2205636404 hasConceptScore W2205636404C23123220 @default.
- W2205636404 hasConceptScore W2205636404C25810664 @default.
- W2205636404 hasConceptScore W2205636404C2776321320 @default.
- W2205636404 hasConceptScore W2205636404C38652104 @default.
- W2205636404 hasConceptScore W2205636404C41008148 @default.
- W2205636404 hasConceptScore W2205636404C44291984 @default.
- W2205636404 hasConceptScore W2205636404C95623464 @default.
- W2205636404 hasLocation W22056364041 @default.
- W2205636404 hasLocation W22056364042 @default.
- W2205636404 hasLocation W22056364043 @default.
- W2205636404 hasLocation W22056364044 @default.
- W2205636404 hasLocation W22056364045 @default.
- W2205636404 hasLocation W22056364046 @default.
- W2205636404 hasOpenAccess W2205636404 @default.
- W2205636404 hasPrimaryLocation W22056364041 @default.
- W2205636404 hasRelatedWork W1788528807 @default.
- W2205636404 hasRelatedWork W1901649692 @default.
- W2205636404 hasRelatedWork W207304934 @default.
- W2205636404 hasRelatedWork W2120460904 @default.
- W2205636404 hasRelatedWork W2354866896 @default.
- W2205636404 hasRelatedWork W2393185060 @default.
- W2205636404 hasRelatedWork W2394022102 @default.
- W2205636404 hasRelatedWork W2725657302 @default.
- W2205636404 hasRelatedWork W3096696488 @default.
- W2205636404 hasRelatedWork W4377703168 @default.
- W2205636404 hasVolume "2015" @default.
- W2205636404 isParatext "false" @default.