Matches in SemOpenAlex for { <https://semopenalex.org/work/W2205646132> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2205646132 abstract "Author(s): Sapp, Stephanie | Advisor(s): van der Laan, Mark | Abstract: Ensemble methods using the same underlying algorithm trained on different subsets of observations have recently received increased attention as practical prediction tools for massive data sets. We propose Subsemble, a general subset ensemble prediction method, which can be used for small, moderate, or large data sets. Subsemble partitions the full data set into subsets of observations, fits one or more user-specified underlying algorithm on each subset, and uses a clever form of V-fold cross-validation to output a prediction function that combines the subset-specific fits through a second user-specified metalearner algorithm. We give an oracle result that provides a theoretical performance guarantee for Subsemble. Through simulations, we demonstrate that Subsembles with randomly created subsets can be beneficial tools for small to moderate sized data sets, and often have better prediction performance than the same underlying algorithm fit just once on the full data set. We also describe how to include Subsembles as candidates in a SuperLearner library, providing a practical way to evaluate the performance of Subsembles relative to the same underlying algorithm fit just once on the full data set.Since the final Subsemble estimator varies depending on the data within each subset, different strategies for creating the subsets used in Subsemble result in different Subsembles, which in turn have different prediction performance. To study the effect of subset creation strategies, we propose supervised partitioning of the covariate space to learn the subsets used in Subsemble. We highlight computational advantages of this approach, discuss applications to large-scale data sets, and develop a practical Supervised Subsemble method using regression trees to both create the covariate space partitioning, and select the number of subsets used in Subsemble. Through simulations and real data analysis, we show that this subset creation method can provide better prediction performance than the random subset version.Finally, we develop the R package subsemble to make the Subsemble method readily available to both researchers and practitioners. We describe the subsemble function, discuss implementation details, and illustrate application of the Subsemble algorithm for prediction with subsemble through an example data set." @default.
- W2205646132 created "2016-06-24" @default.
- W2205646132 creator A5047374621 @default.
- W2205646132 date "2014-01-01" @default.
- W2205646132 modified "2023-09-27" @default.
- W2205646132 title "Subsemble: A Flexible Subset Ensemble Prediction Method" @default.
- W2205646132 cites W2029237784 @default.
- W2205646132 cites W2912934387 @default.
- W2205646132 cites W2914369697 @default.
- W2205646132 cites W3085162807 @default.
- W2205646132 hasPublicationYear "2014" @default.
- W2205646132 type Work @default.
- W2205646132 sameAs 2205646132 @default.
- W2205646132 citedByCount "0" @default.
- W2205646132 crossrefType "journal-article" @default.
- W2205646132 hasAuthorship W2205646132A5047374621 @default.
- W2205646132 hasConcept C105795698 @default.
- W2205646132 hasConcept C11413529 @default.
- W2205646132 hasConcept C115903868 @default.
- W2205646132 hasConcept C119043178 @default.
- W2205646132 hasConcept C119857082 @default.
- W2205646132 hasConcept C124101348 @default.
- W2205646132 hasConcept C14036430 @default.
- W2205646132 hasConcept C154945302 @default.
- W2205646132 hasConcept C177264268 @default.
- W2205646132 hasConcept C185429906 @default.
- W2205646132 hasConcept C199360897 @default.
- W2205646132 hasConcept C33923547 @default.
- W2205646132 hasConcept C41008148 @default.
- W2205646132 hasConcept C55166926 @default.
- W2205646132 hasConcept C58489278 @default.
- W2205646132 hasConcept C78458016 @default.
- W2205646132 hasConcept C86803240 @default.
- W2205646132 hasConceptScore W2205646132C105795698 @default.
- W2205646132 hasConceptScore W2205646132C11413529 @default.
- W2205646132 hasConceptScore W2205646132C115903868 @default.
- W2205646132 hasConceptScore W2205646132C119043178 @default.
- W2205646132 hasConceptScore W2205646132C119857082 @default.
- W2205646132 hasConceptScore W2205646132C124101348 @default.
- W2205646132 hasConceptScore W2205646132C14036430 @default.
- W2205646132 hasConceptScore W2205646132C154945302 @default.
- W2205646132 hasConceptScore W2205646132C177264268 @default.
- W2205646132 hasConceptScore W2205646132C185429906 @default.
- W2205646132 hasConceptScore W2205646132C199360897 @default.
- W2205646132 hasConceptScore W2205646132C33923547 @default.
- W2205646132 hasConceptScore W2205646132C41008148 @default.
- W2205646132 hasConceptScore W2205646132C55166926 @default.
- W2205646132 hasConceptScore W2205646132C58489278 @default.
- W2205646132 hasConceptScore W2205646132C78458016 @default.
- W2205646132 hasConceptScore W2205646132C86803240 @default.
- W2205646132 hasLocation W22056461321 @default.
- W2205646132 hasOpenAccess W2205646132 @default.
- W2205646132 hasPrimaryLocation W22056461321 @default.
- W2205646132 hasRelatedWork W1513435248 @default.
- W2205646132 hasRelatedWork W1592251628 @default.
- W2205646132 hasRelatedWork W1686335701 @default.
- W2205646132 hasRelatedWork W1867084762 @default.
- W2205646132 hasRelatedWork W1975978435 @default.
- W2205646132 hasRelatedWork W2017063234 @default.
- W2205646132 hasRelatedWork W2040592637 @default.
- W2205646132 hasRelatedWork W2056336673 @default.
- W2205646132 hasRelatedWork W2104364170 @default.
- W2205646132 hasRelatedWork W2111662199 @default.
- W2205646132 hasRelatedWork W2122956714 @default.
- W2205646132 hasRelatedWork W2123358413 @default.
- W2205646132 hasRelatedWork W2124557638 @default.
- W2205646132 hasRelatedWork W2131418434 @default.
- W2205646132 hasRelatedWork W2164053026 @default.
- W2205646132 hasRelatedWork W2174309396 @default.
- W2205646132 hasRelatedWork W2953672488 @default.
- W2205646132 hasRelatedWork W3135865967 @default.
- W2205646132 hasRelatedWork W3202559773 @default.
- W2205646132 hasRelatedWork W1961449082 @default.
- W2205646132 isParatext "false" @default.
- W2205646132 isRetracted "false" @default.
- W2205646132 magId "2205646132" @default.
- W2205646132 workType "article" @default.