Matches in SemOpenAlex for { <https://semopenalex.org/work/W2205896137> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2205896137 abstract "We model a neural network with adaptive structure and dynamic learning.Higher level learning components helps the network to think before learning.Number of hidden neurons are decreased and redundant samples are removed.Increases classification accuracy, reduces detection time & architecture complexity.Various abnormality levels in vital parameters of multiple patients are classified. Dynamically changing real world applications, demands for rapid and accurate machine learning algorithm. In neural network based machine learning algorithms, radial basis function (RBF) network is a simple supervised learning feed forward network. With its simplicity, this network is highly suitable to model and control the nonlinear systems. Existing RBF networks in literature are applied to static applications and also faces challenges such as increased model size, neuron removal, improper center selection etc leading to erroneous output. To overcome the challenges and handle complex real world problems, this paper proposes a new optimum steepest descent based higher level learning radial basis function network (OSDHL-RBFN). The proposed OSDHL-RBFN implements major components inspired from the human brain for efficient learning, adaptive structure and accurate classification. Higher level learning and thinking components of the proposed network are sample deletion, neuron addition, neuron migration, sample navigation and neuroplasticity. These components helps the classifier to think before learning the samples and regulates the learning strategy. The knowledge gained from the trained samples are used by the network to identify the incomplete sample, optimal center and bond strength of hidden & output neurons. Adaptive network structure is employed to minimize classification error. The proposed work also uses optimum steepest descent method for weight parameter update to minimize the sum square error. OSDHL-RBFN is tested and evaluated in both static and dynamic environments on nine benchmark classification (binary and multiclass) problems for balanced, unbalanced, small, large, low dimensional and high dimensional datasets. The overall and class wise efficiency of OSDHL-RBFN is improved when compared to other RBFN's in the literature. The performance results clearly show that the proposed OSDHL-RBFN reduces the architecture complexity and computation time compared to other RBFN's. Overall, the proposed OSDHL-RBFN is efficient and suitable for dynamic real world applications in terms of detection time and accuracy. As a case study, OSDHL-RBFN is implemented in real time remote health monitoring application for classifying the various abnormality levels in vital parameters." @default.
- W2205896137 created "2016-06-24" @default.
- W2205896137 creator A5005352936 @default.
- W2205896137 creator A5053409975 @default.
- W2205896137 creator A5080497414 @default.
- W2205896137 date "2015-11-01" @default.
- W2205896137 modified "2023-09-24" @default.
- W2205896137 title "Optimum steepest descent higher level learning radial basis function network" @default.
- W2205896137 cites W1976047713 @default.
- W2205896137 cites W1984165601 @default.
- W2205896137 cites W1997854785 @default.
- W2205896137 cites W2004475192 @default.
- W2205896137 cites W2040622182 @default.
- W2205896137 cites W2050443712 @default.
- W2205896137 cites W2051085510 @default.
- W2205896137 cites W2052873478 @default.
- W2205896137 cites W2063284749 @default.
- W2205896137 cites W2064599931 @default.
- W2205896137 cites W2069735905 @default.
- W2205896137 cites W2075157159 @default.
- W2205896137 cites W2093022009 @default.
- W2205896137 cites W2096369439 @default.
- W2205896137 cites W2098258495 @default.
- W2205896137 cites W2116119284 @default.
- W2205896137 cites W2122515683 @default.
- W2205896137 cites W2127045326 @default.
- W2205896137 cites W2128535941 @default.
- W2205896137 cites W2128633998 @default.
- W2205896137 cites W2132678073 @default.
- W2205896137 cites W2137201690 @default.
- W2205896137 cites W2142393774 @default.
- W2205896137 cites W2143539877 @default.
- W2205896137 cites W2150398411 @default.
- W2205896137 cites W2151205149 @default.
- W2205896137 cites W2160612737 @default.
- W2205896137 cites W2254931534 @default.
- W2205896137 doi "https://doi.org/10.1016/j.eswa.2015.06.036" @default.
- W2205896137 hasPublicationYear "2015" @default.
- W2205896137 type Work @default.
- W2205896137 sameAs 2205896137 @default.
- W2205896137 citedByCount "10" @default.
- W2205896137 countsByYear W22058961372015 @default.
- W2205896137 countsByYear W22058961372016 @default.
- W2205896137 countsByYear W22058961372017 @default.
- W2205896137 countsByYear W22058961372018 @default.
- W2205896137 countsByYear W22058961372019 @default.
- W2205896137 countsByYear W22058961372020 @default.
- W2205896137 countsByYear W22058961372021 @default.
- W2205896137 crossrefType "journal-article" @default.
- W2205896137 hasAuthorship W2205896137A5005352936 @default.
- W2205896137 hasAuthorship W2205896137A5053409975 @default.
- W2205896137 hasAuthorship W2205896137A5080497414 @default.
- W2205896137 hasConcept C119857082 @default.
- W2205896137 hasConcept C132917294 @default.
- W2205896137 hasConcept C153180895 @default.
- W2205896137 hasConcept C153258448 @default.
- W2205896137 hasConcept C154945302 @default.
- W2205896137 hasConcept C41008148 @default.
- W2205896137 hasConcept C50644808 @default.
- W2205896137 hasConcept C95623464 @default.
- W2205896137 hasConcept C98856871 @default.
- W2205896137 hasConceptScore W2205896137C119857082 @default.
- W2205896137 hasConceptScore W2205896137C132917294 @default.
- W2205896137 hasConceptScore W2205896137C153180895 @default.
- W2205896137 hasConceptScore W2205896137C153258448 @default.
- W2205896137 hasConceptScore W2205896137C154945302 @default.
- W2205896137 hasConceptScore W2205896137C41008148 @default.
- W2205896137 hasConceptScore W2205896137C50644808 @default.
- W2205896137 hasConceptScore W2205896137C95623464 @default.
- W2205896137 hasConceptScore W2205896137C98856871 @default.
- W2205896137 hasFunder F4320334774 @default.
- W2205896137 hasLocation W22058961371 @default.
- W2205896137 hasOpenAccess W2205896137 @default.
- W2205896137 hasPrimaryLocation W22058961371 @default.
- W2205896137 hasRelatedWork W1517968461 @default.
- W2205896137 hasRelatedWork W1571551140 @default.
- W2205896137 hasRelatedWork W1751450240 @default.
- W2205896137 hasRelatedWork W1983236527 @default.
- W2205896137 hasRelatedWork W2013388979 @default.
- W2205896137 hasRelatedWork W2018769829 @default.
- W2205896137 hasRelatedWork W2029208572 @default.
- W2205896137 hasRelatedWork W2035861572 @default.
- W2205896137 hasRelatedWork W2057991959 @default.
- W2205896137 hasRelatedWork W2097269738 @default.
- W2205896137 hasRelatedWork W2098885396 @default.
- W2205896137 hasRelatedWork W2099244771 @default.
- W2205896137 hasRelatedWork W2114370465 @default.
- W2205896137 hasRelatedWork W2135719924 @default.
- W2205896137 hasRelatedWork W2143393652 @default.
- W2205896137 hasRelatedWork W2165778925 @default.
- W2205896137 hasRelatedWork W2527007184 @default.
- W2205896137 hasRelatedWork W2546020493 @default.
- W2205896137 hasRelatedWork W2766639491 @default.
- W2205896137 hasRelatedWork W2914317573 @default.
- W2205896137 isParatext "false" @default.
- W2205896137 isRetracted "false" @default.
- W2205896137 magId "2205896137" @default.
- W2205896137 workType "article" @default.