Matches in SemOpenAlex for { <https://semopenalex.org/work/W220595325> ?p ?o ?g. }
- W220595325 endingPage "12047" @default.
- W220595325 startingPage "12040" @default.
- W220595325 abstract "The lysine methyltransferase (KMT) SETMAR is implicated in the response to and repair of DNA damage, but its molecular function is not clear. SETMAR has been associated with dimethylation of histone H3 lysine 36 (H3K36) at sites of DNA damage. However, SETMAR does not methylate H3K36 in vitro. This and the observation that SETMAR is not active on nucleosomes suggest that H3K36 methylation is not a physiologically relevant activity. To identify potential non-histone substrates, we utilized a strategy on the basis of quantitative proteomic analysis of methylated lysine. Our approach identified lysine 130 of the mRNA splicing factor snRNP70 as a SETMAR substrate in vitro, and we show that the enzyme primarily generates monomethylation at this position. Furthermore, we show that SETMAR methylates snRNP70 Lys-130 in cells. Because snRNP70 is a key early regulator of 5′ splice site selection, our results suggest a model in which methylation of snRNP70 by SETMAR regulates constitutive and/or alternative splicing. In addition, the proteomic strategy described here is broadly applicable and is a promising route for large-scale mapping of KMT substrates.Background: SETMAR is a lysine methyltransferase (KMT) that contributes to DNA repair, but its biochemical function is not well understood.Results: A novel proteomic strategy identifies splicing factor snRNP70 as a SETMAR substrate.Conclusion: SETMAR is the first KMT identified to target splicing factors.Significance: Proteomics can be harnessed to discover methyltransferase substrates. Lysine methylation may be a new mode of regulation for mRNA splicing. The lysine methyltransferase (KMT) SETMAR is implicated in the response to and repair of DNA damage, but its molecular function is not clear. SETMAR has been associated with dimethylation of histone H3 lysine 36 (H3K36) at sites of DNA damage. However, SETMAR does not methylate H3K36 in vitro. This and the observation that SETMAR is not active on nucleosomes suggest that H3K36 methylation is not a physiologically relevant activity. To identify potential non-histone substrates, we utilized a strategy on the basis of quantitative proteomic analysis of methylated lysine. Our approach identified lysine 130 of the mRNA splicing factor snRNP70 as a SETMAR substrate in vitro, and we show that the enzyme primarily generates monomethylation at this position. Furthermore, we show that SETMAR methylates snRNP70 Lys-130 in cells. Because snRNP70 is a key early regulator of 5′ splice site selection, our results suggest a model in which methylation of snRNP70 by SETMAR regulates constitutive and/or alternative splicing. In addition, the proteomic strategy described here is broadly applicable and is a promising route for large-scale mapping of KMT substrates. Background: SETMAR is a lysine methyltransferase (KMT) that contributes to DNA repair, but its biochemical function is not well understood. Results: A novel proteomic strategy identifies splicing factor snRNP70 as a SETMAR substrate. Conclusion: SETMAR is the first KMT identified to target splicing factors. Significance: Proteomics can be harnessed to discover methyltransferase substrates. Lysine methylation may be a new mode of regulation for mRNA splicing." @default.
- W220595325 created "2016-06-24" @default.
- W220595325 creator A5005370974 @default.
- W220595325 creator A5018866891 @default.
- W220595325 creator A5023534706 @default.
- W220595325 creator A5056966415 @default.
- W220595325 creator A5069105266 @default.
- W220595325 creator A5084238030 @default.
- W220595325 date "2015-05-01" @default.
- W220595325 modified "2023-10-18" @default.
- W220595325 title "A Proteomic Strategy Identifies Lysine Methylation of Splicing Factor snRNP70 by the SETMAR Enzyme" @default.
- W220595325 cites W143544902 @default.
- W220595325 cites W1973314719 @default.
- W220595325 cites W1982396125 @default.
- W220595325 cites W1992848590 @default.
- W220595325 cites W1995438082 @default.
- W220595325 cites W1998132722 @default.
- W220595325 cites W2016025530 @default.
- W220595325 cites W2019823534 @default.
- W220595325 cites W2024588431 @default.
- W220595325 cites W2031211461 @default.
- W220595325 cites W2033581736 @default.
- W220595325 cites W2034717128 @default.
- W220595325 cites W2044536765 @default.
- W220595325 cites W2047552911 @default.
- W220595325 cites W2048418221 @default.
- W220595325 cites W2049482823 @default.
- W220595325 cites W2058762628 @default.
- W220595325 cites W2060882402 @default.
- W220595325 cites W2064815984 @default.
- W220595325 cites W2067080454 @default.
- W220595325 cites W2076142854 @default.
- W220595325 cites W2079344617 @default.
- W220595325 cites W2080752012 @default.
- W220595325 cites W2088783174 @default.
- W220595325 cites W2088806699 @default.
- W220595325 cites W2092718815 @default.
- W220595325 cites W2092860670 @default.
- W220595325 cites W2094280432 @default.
- W220595325 cites W2110002004 @default.
- W220595325 cites W2140946052 @default.
- W220595325 cites W2151026975 @default.
- W220595325 cites W2162779169 @default.
- W220595325 cites W2164678766 @default.
- W220595325 cites W2166164324 @default.
- W220595325 cites W2166762931 @default.
- W220595325 doi "https://doi.org/10.1074/jbc.m115.641530" @default.
- W220595325 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4424340" @default.
- W220595325 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25795785" @default.
- W220595325 hasPublicationYear "2015" @default.
- W220595325 type Work @default.
- W220595325 sameAs 220595325 @default.
- W220595325 citedByCount "30" @default.
- W220595325 countsByYear W2205953252015 @default.
- W220595325 countsByYear W2205953252016 @default.
- W220595325 countsByYear W2205953252017 @default.
- W220595325 countsByYear W2205953252018 @default.
- W220595325 countsByYear W2205953252019 @default.
- W220595325 countsByYear W2205953252020 @default.
- W220595325 countsByYear W2205953252021 @default.
- W220595325 countsByYear W2205953252022 @default.
- W220595325 countsByYear W2205953252023 @default.
- W220595325 crossrefType "journal-article" @default.
- W220595325 hasAuthorship W220595325A5005370974 @default.
- W220595325 hasAuthorship W220595325A5018866891 @default.
- W220595325 hasAuthorship W220595325A5023534706 @default.
- W220595325 hasAuthorship W220595325A5056966415 @default.
- W220595325 hasAuthorship W220595325A5069105266 @default.
- W220595325 hasAuthorship W220595325A5084238030 @default.
- W220595325 hasBestOaLocation W2205953251 @default.
- W220595325 hasConcept C104317684 @default.
- W220595325 hasConcept C105580179 @default.
- W220595325 hasConcept C150194340 @default.
- W220595325 hasConcept C150425827 @default.
- W220595325 hasConcept C190727270 @default.
- W220595325 hasConcept C194583182 @default.
- W220595325 hasConcept C22709980 @default.
- W220595325 hasConcept C2776016237 @default.
- W220595325 hasConcept C2776745794 @default.
- W220595325 hasConcept C2778178838 @default.
- W220595325 hasConcept C33288867 @default.
- W220595325 hasConcept C515207424 @default.
- W220595325 hasConcept C54458228 @default.
- W220595325 hasConcept C552990157 @default.
- W220595325 hasConcept C55493867 @default.
- W220595325 hasConcept C64927066 @default.
- W220595325 hasConcept C67705224 @default.
- W220595325 hasConcept C73758832 @default.
- W220595325 hasConcept C86803240 @default.
- W220595325 hasConcept C91965660 @default.
- W220595325 hasConcept C95444343 @default.
- W220595325 hasConceptScore W220595325C104317684 @default.
- W220595325 hasConceptScore W220595325C105580179 @default.
- W220595325 hasConceptScore W220595325C150194340 @default.
- W220595325 hasConceptScore W220595325C150425827 @default.
- W220595325 hasConceptScore W220595325C190727270 @default.
- W220595325 hasConceptScore W220595325C194583182 @default.
- W220595325 hasConceptScore W220595325C22709980 @default.