Matches in SemOpenAlex for { <https://semopenalex.org/work/W2206085672> ?p ?o ?g. }
- W2206085672 endingPage "8693" @default.
- W2206085672 startingPage "8675" @default.
- W2206085672 abstract "In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches." @default.
- W2206085672 created "2016-06-24" @default.
- W2206085672 creator A5011709769 @default.
- W2206085672 creator A5018912146 @default.
- W2206085672 creator A5037327191 @default.
- W2206085672 creator A5062949827 @default.
- W2206085672 date "2015-10-28" @default.
- W2206085672 modified "2023-10-16" @default.
- W2206085672 title "Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data" @default.
- W2206085672 cites W1530689501 @default.
- W2206085672 cites W1563961677 @default.
- W2206085672 cites W1568402089 @default.
- W2206085672 cites W1584247442 @default.
- W2206085672 cites W1824888789 @default.
- W2206085672 cites W1989117065 @default.
- W2206085672 cites W1992192543 @default.
- W2206085672 cites W2005888349 @default.
- W2206085672 cites W2047247106 @default.
- W2206085672 cites W2048037029 @default.
- W2206085672 cites W2049516470 @default.
- W2206085672 cites W2063250103 @default.
- W2206085672 cites W2078087775 @default.
- W2206085672 cites W2096661726 @default.
- W2206085672 cites W2108124506 @default.
- W2206085672 cites W2110430630 @default.
- W2206085672 cites W2122827492 @default.
- W2206085672 cites W2129454366 @default.
- W2206085672 cites W2131014997 @default.
- W2206085672 cites W2133671942 @default.
- W2206085672 cites W2146678961 @default.
- W2206085672 cites W2147987962 @default.
- W2206085672 cites W2152875746 @default.
- W2206085672 cites W2157308394 @default.
- W2206085672 cites W2158825509 @default.
- W2206085672 cites W2171417304 @default.
- W2206085672 cites W2172251995 @default.
- W2206085672 cites W2309501318 @default.
- W2206085672 cites W4253981442 @default.
- W2206085672 doi "https://doi.org/10.1088/0031-9155/60/22/8675" @default.
- W2206085672 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26509325" @default.
- W2206085672 hasPublicationYear "2015" @default.
- W2206085672 type Work @default.
- W2206085672 sameAs 2206085672 @default.
- W2206085672 citedByCount "9" @default.
- W2206085672 countsByYear W22060856722017 @default.
- W2206085672 countsByYear W22060856722018 @default.
- W2206085672 countsByYear W22060856722019 @default.
- W2206085672 countsByYear W22060856722021 @default.
- W2206085672 crossrefType "journal-article" @default.
- W2206085672 hasAuthorship W2206085672A5011709769 @default.
- W2206085672 hasAuthorship W2206085672A5018912146 @default.
- W2206085672 hasAuthorship W2206085672A5037327191 @default.
- W2206085672 hasAuthorship W2206085672A5062949827 @default.
- W2206085672 hasConcept C121332964 @default.
- W2206085672 hasConcept C124504099 @default.
- W2206085672 hasConcept C142724271 @default.
- W2206085672 hasConcept C151730666 @default.
- W2206085672 hasConcept C153180895 @default.
- W2206085672 hasConcept C154945302 @default.
- W2206085672 hasConcept C196822366 @default.
- W2206085672 hasConcept C20556612 @default.
- W2206085672 hasConcept C2779343474 @default.
- W2206085672 hasConcept C2908647359 @default.
- W2206085672 hasConcept C31972630 @default.
- W2206085672 hasConcept C41008148 @default.
- W2206085672 hasConcept C49937458 @default.
- W2206085672 hasConcept C62520636 @default.
- W2206085672 hasConcept C71924100 @default.
- W2206085672 hasConcept C86803240 @default.
- W2206085672 hasConcept C89600930 @default.
- W2206085672 hasConcept C99454951 @default.
- W2206085672 hasConceptScore W2206085672C121332964 @default.
- W2206085672 hasConceptScore W2206085672C124504099 @default.
- W2206085672 hasConceptScore W2206085672C142724271 @default.
- W2206085672 hasConceptScore W2206085672C151730666 @default.
- W2206085672 hasConceptScore W2206085672C153180895 @default.
- W2206085672 hasConceptScore W2206085672C154945302 @default.
- W2206085672 hasConceptScore W2206085672C196822366 @default.
- W2206085672 hasConceptScore W2206085672C20556612 @default.
- W2206085672 hasConceptScore W2206085672C2779343474 @default.
- W2206085672 hasConceptScore W2206085672C2908647359 @default.
- W2206085672 hasConceptScore W2206085672C31972630 @default.
- W2206085672 hasConceptScore W2206085672C41008148 @default.
- W2206085672 hasConceptScore W2206085672C49937458 @default.
- W2206085672 hasConceptScore W2206085672C62520636 @default.
- W2206085672 hasConceptScore W2206085672C71924100 @default.
- W2206085672 hasConceptScore W2206085672C86803240 @default.
- W2206085672 hasConceptScore W2206085672C89600930 @default.
- W2206085672 hasConceptScore W2206085672C99454951 @default.
- W2206085672 hasFunder F4320320879 @default.
- W2206085672 hasIssue "22" @default.
- W2206085672 hasLocation W22060856721 @default.
- W2206085672 hasLocation W22060856722 @default.
- W2206085672 hasOpenAccess W2206085672 @default.
- W2206085672 hasPrimaryLocation W22060856721 @default.
- W2206085672 hasRelatedWork W1669643531 @default.
- W2206085672 hasRelatedWork W1982826852 @default.
- W2206085672 hasRelatedWork W2005437358 @default.