Matches in SemOpenAlex for { <https://semopenalex.org/work/W2206172273> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2206172273 abstract "Feature dimensionality reduction has been widely used in various computer vision tasks. We explore feature selection as the dimensionality reduction technique and propose to use a structured approach, based on the Markov Blanket (MB), to select features. We first introduce a new MB discovery algorithm, Simultaneous Markov Blanket (STMB) discovery, that improves the efficiency of state-of-the-art algorithms. Then we theoretically justify three advantages of structured feature selection over traditional feature selection methods. Specifically, we show that the Markov Blanket is the minimum feature set that retains the maximal mutual information and also gives the lowest Bayes classification error. Then we apply structured feature selection to two applications: 1) We introduce a new method that enables STMB to scale up and show the competitive performance of our algorithms on large-scale image classification tasks. 2) We propose a method for structured feature selection to handle hierarchical features and show the proposed method can lead to big performance gain in facial expression and action unit (AU) recognition tasks." @default.
- W2206172273 created "2016-06-24" @default.
- W2206172273 creator A5028109081 @default.
- W2206172273 creator A5057879516 @default.
- W2206172273 creator A5076346273 @default.
- W2206172273 date "2015-12-01" @default.
- W2206172273 modified "2023-10-18" @default.
- W2206172273 title "Structured Feature Selection" @default.
- W2206172273 cites W1551774182 @default.
- W2206172273 cites W1556316174 @default.
- W2206172273 cites W1973727087 @default.
- W2206172273 cites W1974210421 @default.
- W2206172273 cites W1976921161 @default.
- W2206172273 cites W1984309565 @default.
- W2206172273 cites W1984354005 @default.
- W2206172273 cites W1987435156 @default.
- W2206172273 cites W2013374740 @default.
- W2206172273 cites W2023640363 @default.
- W2206172273 cites W2041433259 @default.
- W2206172273 cites W2053229256 @default.
- W2206172273 cites W2059484129 @default.
- W2206172273 cites W2088073093 @default.
- W2206172273 cites W2098038934 @default.
- W2206172273 cites W2102831150 @default.
- W2206172273 cites W2103943262 @default.
- W2206172273 cites W2111006384 @default.
- W2206172273 cites W2114588272 @default.
- W2206172273 cites W2116742884 @default.
- W2206172273 cites W2124509324 @default.
- W2206172273 cites W2125655865 @default.
- W2206172273 cites W2126698740 @default.
- W2206172273 cites W2129000925 @default.
- W2206172273 cites W2134860945 @default.
- W2206172273 cites W2138648333 @default.
- W2206172273 cites W2145310492 @default.
- W2206172273 cites W2147238549 @default.
- W2206172273 cites W2148554573 @default.
- W2206172273 cites W2154053567 @default.
- W2206172273 cites W2162064258 @default.
- W2206172273 cites W2164530430 @default.
- W2206172273 cites W1995879737 @default.
- W2206172273 doi "https://doi.org/10.1109/iccv.2015.484" @default.
- W2206172273 hasPublicationYear "2015" @default.
- W2206172273 type Work @default.
- W2206172273 sameAs 2206172273 @default.
- W2206172273 citedByCount "5" @default.
- W2206172273 countsByYear W22061722732016 @default.
- W2206172273 countsByYear W22061722732017 @default.
- W2206172273 countsByYear W22061722732019 @default.
- W2206172273 countsByYear W22061722732020 @default.
- W2206172273 crossrefType "proceedings-article" @default.
- W2206172273 hasAuthorship W2206172273A5028109081 @default.
- W2206172273 hasAuthorship W2206172273A5057879516 @default.
- W2206172273 hasAuthorship W2206172273A5076346273 @default.
- W2206172273 hasConcept C138885662 @default.
- W2206172273 hasConcept C148483581 @default.
- W2206172273 hasConcept C154945302 @default.
- W2206172273 hasConcept C2776401178 @default.
- W2206172273 hasConcept C41008148 @default.
- W2206172273 hasConcept C41895202 @default.
- W2206172273 hasConcept C81917197 @default.
- W2206172273 hasConceptScore W2206172273C138885662 @default.
- W2206172273 hasConceptScore W2206172273C148483581 @default.
- W2206172273 hasConceptScore W2206172273C154945302 @default.
- W2206172273 hasConceptScore W2206172273C2776401178 @default.
- W2206172273 hasConceptScore W2206172273C41008148 @default.
- W2206172273 hasConceptScore W2206172273C41895202 @default.
- W2206172273 hasConceptScore W2206172273C81917197 @default.
- W2206172273 hasLocation W22061722731 @default.
- W2206172273 hasOpenAccess W2206172273 @default.
- W2206172273 hasPrimaryLocation W22061722731 @default.
- W2206172273 hasRelatedWork W1485063768 @default.
- W2206172273 hasRelatedWork W2118336583 @default.
- W2206172273 hasRelatedWork W2325128067 @default.
- W2206172273 hasRelatedWork W2793188405 @default.
- W2206172273 hasRelatedWork W2952668426 @default.
- W2206172273 hasRelatedWork W2955698379 @default.
- W2206172273 hasRelatedWork W2970622411 @default.
- W2206172273 hasRelatedWork W3033629112 @default.
- W2206172273 hasRelatedWork W3134154544 @default.
- W2206172273 hasRelatedWork W2751504412 @default.
- W2206172273 isParatext "false" @default.
- W2206172273 isRetracted "false" @default.
- W2206172273 magId "2206172273" @default.
- W2206172273 workType "article" @default.