Matches in SemOpenAlex for { <https://semopenalex.org/work/W2206529079> ?p ?o ?g. }
- W2206529079 endingPage "189" @default.
- W2206529079 startingPage "178" @default.
- W2206529079 abstract "Existing dimension reduction methods in multivariate analysis have focused on reducing sets of random vectors into equivalently sized dimensions, while methods in regression settings have focused mainly on decreasing the dimension of the predictor variables. However, for problems involving a multivariate response, reducing the dimension of the response vector is also desirable and important. In this paper, we develop a new concept, termed the Dual Central Subspaces (DCS), to produce a method for simultaneously reducing the dimensions of two sets of random vectors, irrespective of the labels predictor and response. Different from previous methods based on extensions of Canonical Correlation Analysis (CCA), the recovery of this subspace provides a new research direction for multivariate sufficient dimension reduction. A particular model-free approach is detailed theoretically and the performance investigated through simulation and a real data analysis." @default.
- W2206529079 created "2016-06-24" @default.
- W2206529079 creator A5000740437 @default.
- W2206529079 creator A5015790066 @default.
- W2206529079 creator A5059589977 @default.
- W2206529079 date "2016-03-01" @default.
- W2206529079 modified "2023-10-12" @default.
- W2206529079 title "The Dual Central Subspaces in dimension reduction" @default.
- W2206529079 cites W1975077471 @default.
- W2206529079 cites W1977085253 @default.
- W2206529079 cites W1977234859 @default.
- W2206529079 cites W1980876343 @default.
- W2206529079 cites W1990476274 @default.
- W2206529079 cites W2001361955 @default.
- W2206529079 cites W2010280712 @default.
- W2206529079 cites W2010361836 @default.
- W2206529079 cites W2012801463 @default.
- W2206529079 cites W2025645499 @default.
- W2206529079 cites W2028690350 @default.
- W2206529079 cites W2040825813 @default.
- W2206529079 cites W2049124732 @default.
- W2206529079 cites W2053225089 @default.
- W2206529079 cites W2058939725 @default.
- W2206529079 cites W2066740458 @default.
- W2206529079 cites W2079842708 @default.
- W2206529079 cites W2083413239 @default.
- W2206529079 cites W2085398902 @default.
- W2206529079 cites W2090306614 @default.
- W2206529079 cites W2091227993 @default.
- W2206529079 cites W2098361145 @default.
- W2206529079 cites W2110510087 @default.
- W2206529079 cites W2144405862 @default.
- W2206529079 cites W2155381902 @default.
- W2206529079 cites W2163490846 @default.
- W2206529079 cites W2171050905 @default.
- W2206529079 cites W2951715671 @default.
- W2206529079 doi "https://doi.org/10.1016/j.jmva.2015.12.003" @default.
- W2206529079 hasPublicationYear "2016" @default.
- W2206529079 type Work @default.
- W2206529079 sameAs 2206529079 @default.
- W2206529079 citedByCount "6" @default.
- W2206529079 countsByYear W22065290792018 @default.
- W2206529079 countsByYear W22065290792019 @default.
- W2206529079 crossrefType "journal-article" @default.
- W2206529079 hasAuthorship W2206529079A5000740437 @default.
- W2206529079 hasAuthorship W2206529079A5015790066 @default.
- W2206529079 hasAuthorship W2206529079A5059589977 @default.
- W2206529079 hasBestOaLocation W22065290792 @default.
- W2206529079 hasConcept C105795698 @default.
- W2206529079 hasConcept C111335779 @default.
- W2206529079 hasConcept C114614502 @default.
- W2206529079 hasConcept C12362212 @default.
- W2206529079 hasConcept C124952713 @default.
- W2206529079 hasConcept C134306372 @default.
- W2206529079 hasConcept C142362112 @default.
- W2206529079 hasConcept C152877465 @default.
- W2206529079 hasConcept C153874254 @default.
- W2206529079 hasConcept C154945302 @default.
- W2206529079 hasConcept C161584116 @default.
- W2206529079 hasConcept C202444582 @default.
- W2206529079 hasConcept C2524010 @default.
- W2206529079 hasConcept C2780980858 @default.
- W2206529079 hasConcept C27931671 @default.
- W2206529079 hasConcept C32834561 @default.
- W2206529079 hasConcept C33676613 @default.
- W2206529079 hasConcept C33923547 @default.
- W2206529079 hasConcept C41008148 @default.
- W2206529079 hasConcept C41341539 @default.
- W2206529079 hasConcept C70518039 @default.
- W2206529079 hasConceptScore W2206529079C105795698 @default.
- W2206529079 hasConceptScore W2206529079C111335779 @default.
- W2206529079 hasConceptScore W2206529079C114614502 @default.
- W2206529079 hasConceptScore W2206529079C12362212 @default.
- W2206529079 hasConceptScore W2206529079C124952713 @default.
- W2206529079 hasConceptScore W2206529079C134306372 @default.
- W2206529079 hasConceptScore W2206529079C142362112 @default.
- W2206529079 hasConceptScore W2206529079C152877465 @default.
- W2206529079 hasConceptScore W2206529079C153874254 @default.
- W2206529079 hasConceptScore W2206529079C154945302 @default.
- W2206529079 hasConceptScore W2206529079C161584116 @default.
- W2206529079 hasConceptScore W2206529079C202444582 @default.
- W2206529079 hasConceptScore W2206529079C2524010 @default.
- W2206529079 hasConceptScore W2206529079C2780980858 @default.
- W2206529079 hasConceptScore W2206529079C27931671 @default.
- W2206529079 hasConceptScore W2206529079C32834561 @default.
- W2206529079 hasConceptScore W2206529079C33676613 @default.
- W2206529079 hasConceptScore W2206529079C33923547 @default.
- W2206529079 hasConceptScore W2206529079C41008148 @default.
- W2206529079 hasConceptScore W2206529079C41341539 @default.
- W2206529079 hasConceptScore W2206529079C70518039 @default.
- W2206529079 hasFunder F4320306076 @default.
- W2206529079 hasLocation W22065290791 @default.
- W2206529079 hasLocation W22065290792 @default.
- W2206529079 hasOpenAccess W2206529079 @default.
- W2206529079 hasPrimaryLocation W22065290791 @default.
- W2206529079 hasRelatedWork W2147061150 @default.
- W2206529079 hasRelatedWork W2206529079 @default.
- W2206529079 hasRelatedWork W2952134625 @default.