Matches in SemOpenAlex for { <https://semopenalex.org/work/W2206962263> ?p ?o ?g. }
- W2206962263 abstract "Hierarchical multi-label classification is a variant of traditional classification in which the instances can belong to several labels, that are in turn organized in a hierarchy. Functional classification of genes is a challenging problem in functional genomics due to several reasons. First, each gene participates in multiple biological activities. Hence, prediction models should support multi-label classification. Second, the genes are organized and classified according to a hierarchical classification scheme that represents the relationships between the functions of the genes. These relationships should be maintained by the prediction models. In addition, various bimolecular data sources, such as gene expression data and protein-protein interaction data, can be used to assign biological functions to genes. Therefore, the integration of multiple data sources is required to acquire a precise picture of the roles of the genes in the living organisms through uncovering novel biology in the form of previously unknown functional annotations. In order to address these issues, the presented work deals with the hierarchical multi-label classification. The purpose of this thesis is threefold: first, Hierarchical Multi-Label classification algorithm using Boosting classifiers, HML-Boosting, for the hierarchical multi-label classification problem in the context of gene function prediction is proposed. HML-Boosting exploits the predefined hierarchical dependencies among the classes. We demonstrate, through HML-Boosting and using two approaches for class-membership inconsistency correction during the testing phase, the top-down approach and the bottom-up approach, that the HMLBoosting algorithm outperforms the flat classifier approach. Moreover, the author proposed the HiBLADE algorithm (Hierarchical multi-label Boosting with LAbel DEpendency), a novel algorithm that takes advantage of not only the pre-established hierarchical taxonomy of the classes, but also effectively exploits the hidden correlation among the classes that is not shown through the class hierarchy, thereby improving the quality of the predictions. According to the proposed approach, first, the pre-defined hierarchical taxonomy of the labels is used to decide upon the training set for each classifier. Second, the dependencies of the children for each label in the hierarchy are captured and analyzed using Bayes method and instance-based similarity. The primary objective of the proposed algorithm is to find and share a number of base models across the correlated labels. HiBLADE is different than the conventional algorithms in two ways. First, it allows the prediction of multiple functions for genes at the same time while maintaining the hierarchy constraint. Second, the classifiers are built based on the label understudy and its most similar sibling. Experimental results on several real-world biomolecular datasets show that the proposed method can improve the performance of hierarchical multilabel classification. More important, however, is then the third part that focuses on the integration of multiple heterogeneous data sources for improving hierarchical multi-label classification. Unlike most of the previous works, which mostly consider a single data source for gene function prediction, the author explores the integration of heterogeneous data sources for genome-wide gene function prediction. The integration of multiple heterogeneous data sources is addressed with a novel Hierarchical Bayesian iNtegration algorithm, HiBiN, a general framework that uses Bayesian reasoning to integrate heterogeneous data sources for accurate gene function prediction. The system formally uses posterior probabilities to assign class memberships to samples using multiple data sources while maintaining the hierarchical constraint that governs the annotation of the genes. The author demonstrates, through HiBiN, that the integration of the diverse datasets significantly improvesthe classification quality for hierarchical gene function prediction in terms of several measures, compared to single-source prediction models and fused-flat model, which are the baselines compared against. Moreover, the system has been extended to include a weighting scheme to control the contributions from each data source according to its relevance to the label under-study. The results show that the new weighting scheme compares favorably with the other approach along various performance criteria." @default.
- W2206962263 created "2016-06-24" @default.
- W2206962263 creator A5001022750 @default.
- W2206962263 creator A5029757563 @default.
- W2206962263 creator A5035053338 @default.
- W2206962263 date "2012-01-01" @default.
- W2206962263 modified "2023-09-27" @default.
- W2206962263 title "Hierarchical multi-label classification for protein function prediction going beyond traditional approaches" @default.
- W2206962263 cites W1480376833 @default.
- W2206962263 cites W1522999595 @default.
- W2206962263 cites W1523949738 @default.
- W2206962263 cites W1533936090 @default.
- W2206962263 cites W1535853290 @default.
- W2206962263 cites W1590721879 @default.
- W2206962263 cites W1594868493 @default.
- W2206962263 cites W1604973233 @default.
- W2206962263 cites W1615454278 @default.
- W2206962263 cites W1620204465 @default.
- W2206962263 cites W1672197616 @default.
- W2206962263 cites W1753402186 @default.
- W2206962263 cites W1756265184 @default.
- W2206962263 cites W1758094804 @default.
- W2206962263 cites W1811458238 @default.
- W2206962263 cites W1879009681 @default.
- W2206962263 cites W1938740620 @default.
- W2206962263 cites W1966690718 @default.
- W2206962263 cites W1967542092 @default.
- W2206962263 cites W1967890906 @default.
- W2206962263 cites W1971774955 @default.
- W2206962263 cites W1975846642 @default.
- W2206962263 cites W1977177161 @default.
- W2206962263 cites W1977838479 @default.
- W2206962263 cites W1979711143 @default.
- W2206962263 cites W1987678450 @default.
- W2206962263 cites W1988841006 @default.
- W2206962263 cites W1998261914 @default.
- W2206962263 cites W1999154602 @default.
- W2206962263 cites W1999954155 @default.
- W2206962263 cites W2002368590 @default.
- W2206962263 cites W2006345381 @default.
- W2206962263 cites W2008031590 @default.
- W2206962263 cites W2008056655 @default.
- W2206962263 cites W2019037755 @default.
- W2206962263 cites W2022692239 @default.
- W2206962263 cites W204162763 @default.
- W2206962263 cites W2042210880 @default.
- W2206962263 cites W2044923632 @default.
- W2206962263 cites W2046618236 @default.
- W2206962263 cites W2049487246 @default.
- W2206962263 cites W2052684427 @default.
- W2206962263 cites W2060861141 @default.
- W2206962263 cites W2060900933 @default.
- W2206962263 cites W2061453990 @default.
- W2206962263 cites W2061988723 @default.
- W2206962263 cites W2062649377 @default.
- W2206962263 cites W2063862666 @default.
- W2206962263 cites W2068886104 @default.
- W2206962263 cites W2073904866 @default.
- W2206962263 cites W2074446945 @default.
- W2206962263 cites W2074584355 @default.
- W2206962263 cites W2082380079 @default.
- W2206962263 cites W2084802027 @default.
- W2206962263 cites W2092165279 @default.
- W2206962263 cites W2096358531 @default.
- W2206962263 cites W2097749211 @default.
- W2206962263 cites W2100921733 @default.
- W2206962263 cites W2101674614 @default.
- W2206962263 cites W2103017472 @default.
- W2206962263 cites W2103453943 @default.
- W2206962263 cites W2104955141 @default.
- W2206962263 cites W2105187843 @default.
- W2206962263 cites W2106391842 @default.
- W2206962263 cites W2107096911 @default.
- W2206962263 cites W2107710781 @default.
- W2206962263 cites W2108892946 @default.
- W2206962263 cites W2109715166 @default.
- W2206962263 cites W2113654464 @default.
- W2206962263 cites W2115159360 @default.
- W2206962263 cites W2117225622 @default.
- W2206962263 cites W2119043225 @default.
- W2206962263 cites W2119821739 @default.
- W2206962263 cites W2120098186 @default.
- W2206962263 cites W2120688086 @default.
- W2206962263 cites W2121893605 @default.
- W2206962263 cites W2122111042 @default.
- W2206962263 cites W2124649441 @default.
- W2206962263 cites W2125055259 @default.
- W2206962263 cites W2129026672 @default.
- W2206962263 cites W2133435228 @default.
- W2206962263 cites W2135140174 @default.
- W2206962263 cites W2137683543 @default.
- W2206962263 cites W2137786672 @default.
- W2206962263 cites W2137810087 @default.
- W2206962263 cites W2137917513 @default.
- W2206962263 cites W2138745909 @default.
- W2206962263 cites W2141574178 @default.
- W2206962263 cites W2141693590 @default.
- W2206962263 cites W2143830758 @default.
- W2206962263 cites W2144620969 @default.
- W2206962263 cites W2144810924 @default.