Matches in SemOpenAlex for { <https://semopenalex.org/work/W2207344422> ?p ?o ?g. }
- W2207344422 abstract "Author(s): Yang, Yan | Advisor(s): Hochbaum, Dorit S. | Abstract: The main focus of this thesis is using machine learning and data mining techniques to solve challenging problems. Three problems from different subject areas are discussed: nuclear material detection, drug ranking and target tracking in video sequences. The techniques of the three problems described are all based on an efficiently solvable variant of normalized cut, Normalized Cut Prime (NC').The first problem concerns detecting concealed illicit nuclear material, an important part of strategies preventing and deterring nuclear terrorism. What makes this an extremely difficult task are physical limitations of nuclear radiation detectors (arising from energy resolutions and efficiency) and shielding materials terrorists would presumably use to surround the radioactive nuclear material and absorb some of the radiation, thereby reducing the strength of the detected signal. This means the central data analysis problem is identifying a potentially very weak signal, and distinguishing it from both background noise arising from the detector characteristics and naturally occurring environmental radiation. We aim at enhancing the capabilities of detection with algorithmic methods specifically tailored to nuclear data. A novel graph-theory-based methodology based on NC' is used, called Supervised Normalized Cut (SNC). This data mining method classifies measurements obtained from very low resolution plastic scintillation detectors. The accompanying computational study, comparing SNC method with several alternative classification methods shows that in terms of accuracy, the SNC method is on par with alternative approaches, yet SNC is computationally more efficient.The second subject area is in the field of drug ranking. This problem refers to placing in rank order, according to their effectiveness, several drugs treating the same disease, using data derived from cell images. Current technologies use the recently developed high-throughput drug profiling (high content screening or HCS). Despite the potential of HCS for accurate descriptions of drug profiles, it produces a deluge of data of quantitative and multidimensional nature, posing analytical challenges in the data mining process. Our new framework is designed to alleviate these difficulties, in the way of producing graph theoretic descriptors and automatically ordering the performance of drugs, called fractional adjusted bi-partitional score (FABS), a way of converting classification to scores. We experimented with the FABS framework by implementing different algorithms and assessing the accuracy of results by a comparative study, which includes other four baseline methods. The conclusion is encouraging: FABS implemented with NC' consistently outperforms other implementations of FABS and alternative methods currently used for ranking that are unrelated to FABS. The third problem is target tracking in video sequences -- it can be framed as an unsupervised learning problem: the goal is to delineate a target of interest in a video from background. The tracking task is cast as a graph-cut, incorporating intensity and motion data into the formulation. Tests on real-life benchmark videos show that the developed technique, NC-track, based on NC', is more efficient than many existing techniques, and that it delivers good quality results." @default.
- W2207344422 created "2016-06-24" @default.
- W2207344422 creator A5000808913 @default.
- W2207344422 date "2013-01-01" @default.
- W2207344422 modified "2023-09-27" @default.
- W2207344422 title "Machine Learning Techniques in Nuclear Material Detection, Drug Ranking and Video Tracking" @default.
- W2207344422 cites W105854159 @default.
- W2207344422 cites W1511796173 @default.
- W2207344422 cites W1563088657 @default.
- W2207344422 cites W1570448133 @default.
- W2207344422 cites W1602492977 @default.
- W2207344422 cites W165777125 @default.
- W2207344422 cites W1677575747 @default.
- W2207344422 cites W1746680969 @default.
- W2207344422 cites W1867429401 @default.
- W2207344422 cites W1873332500 @default.
- W2207344422 cites W1878972690 @default.
- W2207344422 cites W1973948212 @default.
- W2207344422 cites W1974934611 @default.
- W2207344422 cites W1981266922 @default.
- W2207344422 cites W1985317603 @default.
- W2207344422 cites W1986096063 @default.
- W2207344422 cites W1988790447 @default.
- W2207344422 cites W1991001144 @default.
- W2207344422 cites W1993669821 @default.
- W2207344422 cites W1997546592 @default.
- W2207344422 cites W2002445283 @default.
- W2207344422 cites W2002531683 @default.
- W2207344422 cites W2006132599 @default.
- W2207344422 cites W2008353316 @default.
- W2207344422 cites W2009140822 @default.
- W2207344422 cites W2013347084 @default.
- W2207344422 cites W2013822762 @default.
- W2207344422 cites W2016413285 @default.
- W2207344422 cites W2020282424 @default.
- W2207344422 cites W2022234741 @default.
- W2207344422 cites W2023083839 @default.
- W2207344422 cites W2034562813 @default.
- W2207344422 cites W2041066856 @default.
- W2207344422 cites W2050778826 @default.
- W2207344422 cites W2051812123 @default.
- W2207344422 cites W2052636906 @default.
- W2207344422 cites W2056022845 @default.
- W2207344422 cites W2056035420 @default.
- W2207344422 cites W2058871925 @default.
- W2207344422 cites W2061773916 @default.
- W2207344422 cites W2064617419 @default.
- W2207344422 cites W2067098334 @default.
- W2207344422 cites W2075258506 @default.
- W2207344422 cites W2078191062 @default.
- W2207344422 cites W2091708067 @default.
- W2207344422 cites W2093717447 @default.
- W2207344422 cites W2093829413 @default.
- W2207344422 cites W2097787789 @default.
- W2207344422 cites W2098368939 @default.
- W2207344422 cites W2100864581 @default.
- W2207344422 cites W2104884643 @default.
- W2207344422 cites W2105192472 @default.
- W2207344422 cites W2105771436 @default.
- W2207344422 cites W2110831567 @default.
- W2207344422 cites W2118877769 @default.
- W2207344422 cites W2119821739 @default.
- W2207344422 cites W2120172431 @default.
- W2207344422 cites W2121947440 @default.
- W2207344422 cites W2122064174 @default.
- W2207344422 cites W2122792499 @default.
- W2207344422 cites W2123389966 @default.
- W2207344422 cites W2124781496 @default.
- W2207344422 cites W2125238156 @default.
- W2207344422 cites W2127340088 @default.
- W2207344422 cites W2129018774 @default.
- W2207344422 cites W2129418188 @default.
- W2207344422 cites W2129476886 @default.
- W2207344422 cites W2130426318 @default.
- W2207344422 cites W2130698119 @default.
- W2207344422 cites W2131777408 @default.
- W2207344422 cites W2133134923 @default.
- W2207344422 cites W2133864802 @default.
- W2207344422 cites W2133958955 @default.
- W2207344422 cites W2134262590 @default.
- W2207344422 cites W2135046866 @default.
- W2207344422 cites W2136753421 @default.
- W2207344422 cites W2138760860 @default.
- W2207344422 cites W2139212933 @default.
- W2207344422 cites W2143426320 @default.
- W2207344422 cites W2143582647 @default.
- W2207344422 cites W2145251738 @default.
- W2207344422 cites W2147768468 @default.
- W2207344422 cites W2147965279 @default.
- W2207344422 cites W2148958980 @default.
- W2207344422 cites W2151842905 @default.
- W2207344422 cites W2153631847 @default.
- W2207344422 cites W2153635508 @default.
- W2207344422 cites W2160622670 @default.
- W2207344422 cites W2162619882 @default.
- W2207344422 cites W2166563909 @default.
- W2207344422 cites W2170487914 @default.
- W2207344422 cites W2171096262 @default.
- W2207344422 cites W2172207578 @default.
- W2207344422 cites W2313320834 @default.