Matches in SemOpenAlex for { <https://semopenalex.org/work/W2207443604> ?p ?o ?g. }
- W2207443604 abstract "Traditional supply chain management models typically require complete model information, including structural relationships (e.g., how pricing decisions affect customer demand), probabilistic distributions, and parameters. However, in practice, the model information may be uncertain. My dissertation research seeks to address model uncertainty in supply chain management problems using data-driven and robust methods. Incomplete information typically comes in two forms, namely, historical data and partial information. When historical data are available, data-driven methods can be used to obtain decisions directly from data, instead of estimating the model information and then using these estimates to find the optimal solution. When partial information is available, robust methods consider all possible scenarios and make decisions to hedge against the worst-case scenario effectively, instead of making simplified assumptions that could lead to significant loss.Chapter 1 provides an overview of model uncertainty in supply chain management, and discusses the limitations of the traditional methods. The main part of the dissertation is on the application of data-driven and robust methods to three widely-studied supply chain management problems with model uncertainty.Chapter 2 studies the reliable facility location problem where the joint-distribution of facility disruptions is uncertain. For this problem, usually, only partial information in the form of marginal facility disruption probabilities is available. Most existing models require the assumption that the disruptions at different locations are independent of each other. However, in practice, correlated disruptions are widely observed. We present a model that allows disruptions to be correlated with an uncertain joint distribution, and apply distributionally-robust optimization to minimize the expected cost under the worst-case distribution with the given marginal disruption probabilities. The worst-case distribution has a practical interpretation, and its sparse structure allows us to solve the problem efficiently. We find that ignoring disruption correlation could lead to significant loss. The robust method can significantly reduce the regret from model misspecification. It outperforms the traditional approach even under very mild correlation. Most of the benefit of the robust model can be captured at a relatively small cost, which makes it easy to implement in practice.Chapter 3 studies the pricing newsvendor problem where the structural relationship between pricing decisions and customer demand is unknown. Traditional methods for this problem require the selection of a parametric demand model and fitting the model using historical data, while model selection is usually a hard problem in itself. Furthermore, most of the existing literature on pricing requires certain conditions on the demand model, which may not be satisfied by the estimates from data. We present a data-driven approach based only on the historical observations and the basic domain knowledge. The conditional demand distribution is estimated using non-parametric quantile regression with shape constraints. The optimal pricing and inventory decisions are determined numerically using the estimated quantiles. Smoothing and kernelization methods are used to achieve regularization and enhance the performance of the approach. Additional domain knowledge, such as concavity of demand with respect to price, can also be easily incorporated into the approach. Numerical results show that the data-driven approach is able to find close-to-optimal solutions. Smoothing, kernelization, and the incorporation of additional domain knowledge can significantly improve the performance of the approach.Chapter 4 studies inventory management for perishable products where a parameter of the demand distribution is unknown. The traditional separated estimation-optimization approach for this problem has been shown to be suboptimal. To address this issue, an integrated approach called operational statistics has been proposed. We study several important properties of operational statistics. We find that the operational statistics approach is consistent and guaranteed to outperform the traditional approach. We also show that the benefit of using operational statistics is larger when the demand variability is higher. We then generalize the operational statistics approach to the risk-averse newsvendor problem under the conditional value-at-risk (CVaR) criterion. Previous results in operational statistics can be generalized to maximize the expectation of conditional CVaR. In order to model risk-aversion to both the uncertainty in demand sampling and the uncertainty in future demand, we introduce a new criterion called the total CVaR, and find the optimal operational statistic for this new criterion." @default.
- W2207443604 created "2016-06-24" @default.
- W2207443604 creator A5069698966 @default.
- W2207443604 date "2014-01-01" @default.
- W2207443604 modified "2023-09-27" @default.
- W2207443604 title "Essays on Supply Chain Management with Model Uncertainty" @default.
- W2207443604 cites W1537013696 @default.
- W2207443604 cites W1555033159 @default.
- W2207443604 cites W1596717185 @default.
- W2207443604 cites W1762430620 @default.
- W2207443604 cites W1816012887 @default.
- W2207443604 cites W1828651507 @default.
- W2207443604 cites W1965755064 @default.
- W2207443604 cites W1968292003 @default.
- W2207443604 cites W1968598109 @default.
- W2207443604 cites W1968766531 @default.
- W2207443604 cites W1970739592 @default.
- W2207443604 cites W1971321667 @default.
- W2207443604 cites W1991528957 @default.
- W2207443604 cites W1995454998 @default.
- W2207443604 cites W1996675930 @default.
- W2207443604 cites W2001599527 @default.
- W2207443604 cites W2003839915 @default.
- W2207443604 cites W2006288000 @default.
- W2207443604 cites W2009381794 @default.
- W2207443604 cites W2013285825 @default.
- W2207443604 cites W2015661661 @default.
- W2207443604 cites W2018913705 @default.
- W2207443604 cites W2021708247 @default.
- W2207443604 cites W2024479834 @default.
- W2207443604 cites W2024817131 @default.
- W2207443604 cites W2032091434 @default.
- W2207443604 cites W2032697805 @default.
- W2207443604 cites W2035518103 @default.
- W2207443604 cites W2036362268 @default.
- W2207443604 cites W2041015216 @default.
- W2207443604 cites W2045540560 @default.
- W2207443604 cites W2045729738 @default.
- W2207443604 cites W2052526166 @default.
- W2207443604 cites W2057626302 @default.
- W2207443604 cites W2058892733 @default.
- W2207443604 cites W2060472015 @default.
- W2207443604 cites W2061495609 @default.
- W2207443604 cites W2066657907 @default.
- W2207443604 cites W2069855826 @default.
- W2207443604 cites W2070120925 @default.
- W2207443604 cites W2073042413 @default.
- W2207443604 cites W2078645665 @default.
- W2207443604 cites W2080368021 @default.
- W2207443604 cites W208066780 @default.
- W2207443604 cites W2081681547 @default.
- W2207443604 cites W2084205870 @default.
- W2207443604 cites W2084663029 @default.
- W2207443604 cites W2086522200 @default.
- W2207443604 cites W2090343757 @default.
- W2207443604 cites W2093538994 @default.
- W2207443604 cites W2096355537 @default.
- W2207443604 cites W2102890221 @default.
- W2207443604 cites W2102953461 @default.
- W2207443604 cites W2104267382 @default.
- W2207443604 cites W2106985921 @default.
- W2207443604 cites W2110476814 @default.
- W2207443604 cites W2122109562 @default.
- W2207443604 cites W2122117952 @default.
- W2207443604 cites W2122897173 @default.
- W2207443604 cites W2127275253 @default.
- W2207443604 cites W2127685347 @default.
- W2207443604 cites W2128751223 @default.
- W2207443604 cites W2129349429 @default.
- W2207443604 cites W2131116400 @default.
- W2207443604 cites W2134798735 @default.
- W2207443604 cites W2142831149 @default.
- W2207443604 cites W2145592624 @default.
- W2207443604 cites W2155184100 @default.
- W2207443604 cites W2157672420 @default.
- W2207443604 cites W2158260067 @default.
- W2207443604 cites W2158782084 @default.
- W2207443604 cites W2158994553 @default.
- W2207443604 cites W2160172818 @default.
- W2207443604 cites W2162050047 @default.
- W2207443604 cites W2164559241 @default.
- W2207443604 cites W2167250202 @default.
- W2207443604 cites W2168175751 @default.
- W2207443604 cites W2171931949 @default.
- W2207443604 cites W2231413264 @default.
- W2207443604 cites W259804933 @default.
- W2207443604 cites W3023659858 @default.
- W2207443604 cites W3121568017 @default.
- W2207443604 cites W3122984617 @default.
- W2207443604 cites W3123962485 @default.
- W2207443604 cites W2128828282 @default.
- W2207443604 cites W2129895618 @default.
- W2207443604 hasPublicationYear "2014" @default.
- W2207443604 type Work @default.
- W2207443604 sameAs 2207443604 @default.
- W2207443604 citedByCount "0" @default.
- W2207443604 crossrefType "journal-article" @default.
- W2207443604 hasAuthorship W2207443604A5069698966 @default.
- W2207443604 hasConcept C105795698 @default.
- W2207443604 hasConcept C108713360 @default.