Matches in SemOpenAlex for { <https://semopenalex.org/work/W2207541471> ?p ?o ?g. }
- W2207541471 abstract "Author(s): Wang, Guoming | Advisor(s): Vazirani, Umesh | Abstract: Over the last decade, a large number of quantum algorithms have been discovered that outperform their classical counterparts. However, depending on the main techniques used, most of them fall into only three categories. The first category uses quantum Fourier transform to achieve super-polynomial speedup in group-theoretical problems. The second category uses amplitude amplification to achieve polynomial speedup in search problems. The third category simulates quantum many-body systems. Finding a new class of quantum algorithms has proven a challenging task. This dissertation explores several new approaches to developing quantum algorithms. These approaches include span programs, electrical flows and nonsparse Hamiltonian simulation. We demonstrate their power by successfully applying them to some useful problems, including tree detection, effective resistance estimation and curve fitting. All of these algorithms are time-efficient, and some of them are proven to be (nearly) optimal.Span program is a linear-algebraic computation model originally proposed to prove circuit lower bounds. Recently, it is found to be closely related to quantum query complexity. We develop a span-program-based quantum algorithm for the following variant of the tree containment problem. Let $T$ be a fixed tree. Given the $n times n$ adjacency matrix of a graph $G$, we need to decide whether $G$ contains $T$ as a subgraph, or $G$ does not contain $T$ as a minor, under the promise that one of these cases holds. We call this problem is the subgraph/not-a-minor problem for $T$. We show that this problem can be solved by a quantum algorithm with $O(n)$ query complexity and $tilde{O}(n)$ time complexity. This query complexity is optimal, and this time complexity is tight up to poly-logarithmic factors. Electrical network theory has many applications to the design and analysis of classical algorithms. Its connection to quantum computation, however, remains mostly unclear. We give two quantum algorithms for approximating the effective resistance between two given vertices in an electrical network. Both of them have time complexity polynomial in $log{n}$, $d$, $c$, $1/phi$ and $1/epsilon$, where $n$ is the number of vertices, $d$ is the maximum degree of the vertices, $c$ is the ratio of the largest to the smallest edge resistance, $phi$ is the conductance of the network, and $epsilon$ is the relative error. Our algorithms have exponentially better dependence on $n$ than classical algorithms. Furthermore, we prove that the polynomial dependence on the inverse conductance is necessary. As a consequence, our algorithms cannot be greatly improved. Finally, as a by-product, our second algorithm also produces a quantum state encoding the electrical flow between two given vertices in a network, which might be of independent interest. Our algorithms are developed by using quantum tools to analyze the algebraic properties of graph-related matrices. While the first one relies on inverting the Laplacian matrix, the second one relies on projecting onto the kernel of the weighted incidence matrix. It is hopeful that more quantum algorithms could be designed in similar way. Curve fitting is the process of constructing a (simple continuous) curve that has the best fit to a series of data points. It is a common practice in many fields of science and engineering, because it can help us to understand the relationships among two or more variables, and to infer the values of a function where no data are available. We propose efficient quantum algorithms for estimating the best-fit parameters and the quality of least-square curve fitting. The running times of our algorithms are polynomial in $log{n}$, $d$, $kappa$, $nu$, $chi$, $1/Phi$ and $1/epsilon$, where $n$ is the number of data points to be fitted, $d$ is the dimension of the feature vectors, $kappa$ is the condition number of the design matrix, $nu$ and $chi$ are some parameters reflecting the variances of the design matrix and response vector, $Phi$ is the fit quality, and $epsilon$ is the tolerable error. Our algorithms have exponentially better dependence on $n$ than classical algorithms. They are designed by combining the techniques of phase estimation and density matrix exponentiation for nonsparse Hamiltonian simulation." @default.
- W2207541471 created "2016-06-24" @default.
- W2207541471 creator A5011677079 @default.
- W2207541471 date "2014-01-01" @default.
- W2207541471 modified "2023-09-26" @default.
- W2207541471 title "Span Programs, Electrical Flows, and Beyond: New Approaches to Quantum Algorithms" @default.
- W2207541471 cites W127744604 @default.
- W2207541471 cites W1492999010 @default.
- W2207541471 cites W1512771024 @default.
- W2207541471 cites W1516747831 @default.
- W2207541471 cites W1521931189 @default.
- W2207541471 cites W1534413569 @default.
- W2207541471 cites W1542860149 @default.
- W2207541471 cites W1559981310 @default.
- W2207541471 cites W1561344775 @default.
- W2207541471 cites W1564709644 @default.
- W2207541471 cites W1576866980 @default.
- W2207541471 cites W1578099820 @default.
- W2207541471 cites W1599157970 @default.
- W2207541471 cites W1605965057 @default.
- W2207541471 cites W1620538313 @default.
- W2207541471 cites W1631356911 @default.
- W2207541471 cites W1633109858 @default.
- W2207541471 cites W1639121495 @default.
- W2207541471 cites W1650969809 @default.
- W2207541471 cites W1704619525 @default.
- W2207541471 cites W1741741009 @default.
- W2207541471 cites W1784600267 @default.
- W2207541471 cites W1800146307 @default.
- W2207541471 cites W1872909421 @default.
- W2207541471 cites W1917967022 @default.
- W2207541471 cites W1944667606 @default.
- W2207541471 cites W1966082679 @default.
- W2207541471 cites W1966702987 @default.
- W2207541471 cites W1967088292 @default.
- W2207541471 cites W1968991779 @default.
- W2207541471 cites W1971200845 @default.
- W2207541471 cites W1975528636 @default.
- W2207541471 cites W1978660636 @default.
- W2207541471 cites W1979308021 @default.
- W2207541471 cites W1980669364 @default.
- W2207541471 cites W1981783889 @default.
- W2207541471 cites W1982899292 @default.
- W2207541471 cites W1988369744 @default.
- W2207541471 cites W1991075883 @default.
- W2207541471 cites W1993248778 @default.
- W2207541471 cites W1997126380 @default.
- W2207541471 cites W1997391728 @default.
- W2207541471 cites W1998217267 @default.
- W2207541471 cites W2001383654 @default.
- W2207541471 cites W2009106180 @default.
- W2207541471 cites W2009281933 @default.
- W2207541471 cites W2009948449 @default.
- W2207541471 cites W2010275623 @default.
- W2207541471 cites W2017112356 @default.
- W2207541471 cites W2020725861 @default.
- W2207541471 cites W2023316152 @default.
- W2207541471 cites W2026325622 @default.
- W2207541471 cites W2027780909 @default.
- W2207541471 cites W2029495732 @default.
- W2207541471 cites W2031127692 @default.
- W2207541471 cites W203131757 @default.
- W2207541471 cites W2031374990 @default.
- W2207541471 cites W2040792108 @default.
- W2207541471 cites W2040927484 @default.
- W2207541471 cites W2045107949 @default.
- W2207541471 cites W2046481556 @default.
- W2207541471 cites W2048572907 @default.
- W2207541471 cites W2050334794 @default.
- W2207541471 cites W2052891002 @default.
- W2207541471 cites W2053987271 @default.
- W2207541471 cites W2054912210 @default.
- W2207541471 cites W2057065544 @default.
- W2207541471 cites W2057341444 @default.
- W2207541471 cites W2060509762 @default.
- W2207541471 cites W2061741118 @default.
- W2207541471 cites W2066651691 @default.
- W2207541471 cites W2070717444 @default.
- W2207541471 cites W2071874678 @default.
- W2207541471 cites W2079692740 @default.
- W2207541471 cites W2084019889 @default.
- W2207541471 cites W2084652510 @default.
- W2207541471 cites W2090330739 @default.
- W2207541471 cites W2090828985 @default.
- W2207541471 cites W2097358487 @default.
- W2207541471 cites W2098948451 @default.
- W2207541471 cites W2102687371 @default.
- W2207541471 cites W2109154425 @default.
- W2207541471 cites W2109882328 @default.
- W2207541471 cites W2109899096 @default.
- W2207541471 cites W2115407783 @default.
- W2207541471 cites W2117584890 @default.
- W2207541471 cites W2120551550 @default.
- W2207541471 cites W2122780600 @default.
- W2207541471 cites W2123540893 @default.
- W2207541471 cites W2125664420 @default.
- W2207541471 cites W2126323053 @default.
- W2207541471 cites W2127608358 @default.
- W2207541471 cites W2128550154 @default.
- W2207541471 cites W2131378873 @default.