Matches in SemOpenAlex for { <https://semopenalex.org/work/W2207622052> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2207622052 endingPage "220" @default.
- W2207622052 startingPage "208" @default.
- W2207622052 abstract "Imagery analysis represents a significant aspect of maritime domain awareness; however, the amount of imagery is exceeding human capability to process. Unfortunately, the maritime domain presents unique challenges for machine learning to automate such analysis. Indeed, when object recognition algorithms observe real-world data, they face hurdles not present in experimental situations. Imagery from such domains suffers from degradation, have limited examples, and vary greatly in format. These limitations are present satellite imagery because of the associated constraints in expense and capability. To this end, the Hypercube-based NeuroEvolution of Augmenting Topologies approach is investigated in addressing some such challenges for classifying maritime vessels from satellite imagery. Results show that HyperNEAT learns features from such imagery that allows better classification than Principal Component Analysis (PCA). Furthermore, HyperNEAT enables a unique capability to scale image sizes through the indirect encoding." @default.
- W2207622052 created "2016-06-24" @default.
- W2207622052 creator A5000130950 @default.
- W2207622052 creator A5014477387 @default.
- W2207622052 date "2015-01-01" @default.
- W2207622052 modified "2023-09-24" @default.
- W2207622052 title "Feature Learning HyperNEAT: Evolving Neural Networks to Extract Features for Classification of Maritime Satellite Imagery" @default.
- W2207622052 cites W1970862244 @default.
- W2207622052 cites W1976981886 @default.
- W2207622052 cites W1977895763 @default.
- W2207622052 cites W1980661496 @default.
- W2207622052 cites W1986006884 @default.
- W2207622052 cites W2020399841 @default.
- W2207622052 cites W2030641963 @default.
- W2207622052 cites W2050870241 @default.
- W2207622052 cites W2061719199 @default.
- W2207622052 cites W2075874755 @default.
- W2207622052 cites W2108069432 @default.
- W2207622052 cites W2118686331 @default.
- W2207622052 cites W2119053738 @default.
- W2207622052 cites W2119814172 @default.
- W2207622052 cites W2136922672 @default.
- W2207622052 cites W2140685838 @default.
- W2207622052 cites W2141860972 @default.
- W2207622052 cites W2147339007 @default.
- W2207622052 cites W2153684665 @default.
- W2207622052 cites W2159635464 @default.
- W2207622052 cites W2163810466 @default.
- W2207622052 cites W2163922914 @default.
- W2207622052 cites W2169803171 @default.
- W2207622052 cites W2538041617 @default.
- W2207622052 cites W2541549375 @default.
- W2207622052 cites W2952024438 @default.
- W2207622052 doi "https://doi.org/10.1007/978-3-319-23108-2_18" @default.
- W2207622052 hasPublicationYear "2015" @default.
- W2207622052 type Work @default.
- W2207622052 sameAs 2207622052 @default.
- W2207622052 citedByCount "4" @default.
- W2207622052 countsByYear W22076220522017 @default.
- W2207622052 countsByYear W22076220522018 @default.
- W2207622052 countsByYear W22076220522019 @default.
- W2207622052 countsByYear W22076220522022 @default.
- W2207622052 crossrefType "book-chapter" @default.
- W2207622052 hasAuthorship W2207622052A5000130950 @default.
- W2207622052 hasAuthorship W2207622052A5014477387 @default.
- W2207622052 hasConcept C108583219 @default.
- W2207622052 hasConcept C127413603 @default.
- W2207622052 hasConcept C138885662 @default.
- W2207622052 hasConcept C146978453 @default.
- W2207622052 hasConcept C154945302 @default.
- W2207622052 hasConcept C19269812 @default.
- W2207622052 hasConcept C205649164 @default.
- W2207622052 hasConcept C2776401178 @default.
- W2207622052 hasConcept C2778102629 @default.
- W2207622052 hasConcept C41008148 @default.
- W2207622052 hasConcept C41895202 @default.
- W2207622052 hasConcept C50644808 @default.
- W2207622052 hasConcept C62649853 @default.
- W2207622052 hasConceptScore W2207622052C108583219 @default.
- W2207622052 hasConceptScore W2207622052C127413603 @default.
- W2207622052 hasConceptScore W2207622052C138885662 @default.
- W2207622052 hasConceptScore W2207622052C146978453 @default.
- W2207622052 hasConceptScore W2207622052C154945302 @default.
- W2207622052 hasConceptScore W2207622052C19269812 @default.
- W2207622052 hasConceptScore W2207622052C205649164 @default.
- W2207622052 hasConceptScore W2207622052C2776401178 @default.
- W2207622052 hasConceptScore W2207622052C2778102629 @default.
- W2207622052 hasConceptScore W2207622052C41008148 @default.
- W2207622052 hasConceptScore W2207622052C41895202 @default.
- W2207622052 hasConceptScore W2207622052C50644808 @default.
- W2207622052 hasConceptScore W2207622052C62649853 @default.
- W2207622052 hasLocation W22076220521 @default.
- W2207622052 hasOpenAccess W2207622052 @default.
- W2207622052 hasPrimaryLocation W22076220521 @default.
- W2207622052 hasRelatedWork W2027926900 @default.
- W2207622052 hasRelatedWork W2037952344 @default.
- W2207622052 hasRelatedWork W2054087368 @default.
- W2207622052 hasRelatedWork W2057962381 @default.
- W2207622052 hasRelatedWork W2315013538 @default.
- W2207622052 hasRelatedWork W2791559790 @default.
- W2207622052 hasRelatedWork W3176110204 @default.
- W2207622052 hasRelatedWork W4297779434 @default.
- W2207622052 hasRelatedWork W4318482810 @default.
- W2207622052 hasRelatedWork W4318819771 @default.
- W2207622052 isParatext "false" @default.
- W2207622052 isRetracted "false" @default.
- W2207622052 magId "2207622052" @default.
- W2207622052 workType "book-chapter" @default.