Matches in SemOpenAlex for { <https://semopenalex.org/work/W2207714503> ?p ?o ?g. }
- W2207714503 endingPage "162" @default.
- W2207714503 startingPage "150" @default.
- W2207714503 abstract "In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial electric current stimulation (tES), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major tissue compartments, but cannot encode detailed anatomical information within compartments. Finite element models (FEM) can capture more tissue types and intricate anatomical structures, but with the higher precision also comes the need for semi-automated segmentation, and a higher computational cost. In either case, adjusting to the individual human anatomy requires costly magnetic resonance imaging (MRI), and thus head modeling is often based on the anatomy of an 'arbitrary' individual (e.g. Colin27). Additionally, existing reference models for the human head often do not include the cerebro-spinal fluid (CSF), and their field of view excludes portions of the head and neck-two factors that demonstrably affect current-flow patterns. Here we present a highly detailed FEM, which we call ICBM-NY, or New York Head. It is based on the ICBM152 anatomical template (a non-linear average of the MRI of 152 adult human brains) defined in MNI coordinates, for which we extended the field of view to the neck and performed a detailed segmentation of six tissue types (scalp, skull, CSF, gray matter, white matter, air cavities) at 0.5mm(3) resolution. The model was solved for 231 electrode locations. To evaluate its performance, additional FEMs and BEMs were constructed for four individual subjects. Each of the four individual FEMs (regarded as the 'ground truth') is compared to its BEM counterpart, the ICBM-NY, a BEM of the ICBM anatomy, an 'individualized' BEM of the ICBM anatomy warped to the individual head surface, and FEMs of the other individuals. Performance is measured in terms of EEG source localization and tES targeting errors. Results show that the ICBM-NY outperforms FEMs of mismatched individual anatomies as well as the BEM of the ICBM anatomy according to both criteria. We therefore propose the New York Head as a new standard head model to be used in future EEG and tES studies whenever an individual MRI is not available. We release all model data online at neuralengr.com/nyhead/ to facilitate broad adoption." @default.
- W2207714503 created "2016-06-24" @default.
- W2207714503 creator A5068256213 @default.
- W2207714503 creator A5071742820 @default.
- W2207714503 creator A5079902276 @default.
- W2207714503 date "2016-10-01" @default.
- W2207714503 modified "2023-10-17" @default.
- W2207714503 title "The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting" @default.
- W2207714503 cites W1591163814 @default.
- W2207714503 cites W1971734091 @default.
- W2207714503 cites W1987333243 @default.
- W2207714503 cites W1991904995 @default.
- W2207714503 cites W2007364043 @default.
- W2207714503 cites W2011481459 @default.
- W2207714503 cites W2012677785 @default.
- W2207714503 cites W2012883158 @default.
- W2207714503 cites W2014502281 @default.
- W2207714503 cites W2015583343 @default.
- W2207714503 cites W2016980059 @default.
- W2207714503 cites W2018351439 @default.
- W2207714503 cites W2019166461 @default.
- W2207714503 cites W2020745232 @default.
- W2207714503 cites W2021742455 @default.
- W2207714503 cites W2025009638 @default.
- W2207714503 cites W2036686623 @default.
- W2207714503 cites W2037420423 @default.
- W2207714503 cites W2040553986 @default.
- W2207714503 cites W2045444083 @default.
- W2207714503 cites W2057046740 @default.
- W2207714503 cites W2060144955 @default.
- W2207714503 cites W2060518174 @default.
- W2207714503 cites W2063237661 @default.
- W2207714503 cites W2068401331 @default.
- W2207714503 cites W2074760344 @default.
- W2207714503 cites W2079748473 @default.
- W2207714503 cites W2082371233 @default.
- W2207714503 cites W2082850859 @default.
- W2207714503 cites W2091623371 @default.
- W2207714503 cites W2092260964 @default.
- W2207714503 cites W2095694475 @default.
- W2207714503 cites W2097109083 @default.
- W2207714503 cites W2097273459 @default.
- W2207714503 cites W2105957367 @default.
- W2207714503 cites W2107315764 @default.
- W2207714503 cites W2109749221 @default.
- W2207714503 cites W2113431893 @default.
- W2207714503 cites W2113638573 @default.
- W2207714503 cites W2115675385 @default.
- W2207714503 cites W2123171443 @default.
- W2207714503 cites W2123983635 @default.
- W2207714503 cites W2126767504 @default.
- W2207714503 cites W2126906058 @default.
- W2207714503 cites W2127919130 @default.
- W2207714503 cites W2135595031 @default.
- W2207714503 cites W2137161651 @default.
- W2207714503 cites W2140086862 @default.
- W2207714503 cites W2141011218 @default.
- W2207714503 cites W2141723543 @default.
- W2207714503 cites W2141796362 @default.
- W2207714503 cites W2143895814 @default.
- W2207714503 cites W2144944274 @default.
- W2207714503 cites W2145309136 @default.
- W2207714503 cites W2148532693 @default.
- W2207714503 cites W2148582387 @default.
- W2207714503 cites W2160074179 @default.
- W2207714503 cites W2166073443 @default.
- W2207714503 cites W2170458364 @default.
- W2207714503 cites W2171191802 @default.
- W2207714503 cites W2171800174 @default.
- W2207714503 cites W328696533 @default.
- W2207714503 cites W4230920194 @default.
- W2207714503 doi "https://doi.org/10.1016/j.neuroimage.2015.12.019" @default.
- W2207714503 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5778879" @default.
- W2207714503 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26706450" @default.
- W2207714503 hasPublicationYear "2016" @default.
- W2207714503 type Work @default.
- W2207714503 sameAs 2207714503 @default.
- W2207714503 citedByCount "201" @default.
- W2207714503 countsByYear W22077145032016 @default.
- W2207714503 countsByYear W22077145032017 @default.
- W2207714503 countsByYear W22077145032018 @default.
- W2207714503 countsByYear W22077145032019 @default.
- W2207714503 countsByYear W22077145032020 @default.
- W2207714503 countsByYear W22077145032021 @default.
- W2207714503 countsByYear W22077145032022 @default.
- W2207714503 countsByYear W22077145032023 @default.
- W2207714503 crossrefType "journal-article" @default.
- W2207714503 hasAuthorship W2207714503A5068256213 @default.
- W2207714503 hasAuthorship W2207714503A5071742820 @default.
- W2207714503 hasAuthorship W2207714503A5079902276 @default.
- W2207714503 hasBestOaLocation W22077145031 @default.
- W2207714503 hasConcept C114793014 @default.
- W2207714503 hasConcept C121332964 @default.
- W2207714503 hasConcept C126838900 @default.
- W2207714503 hasConcept C127313418 @default.
- W2207714503 hasConcept C135628077 @default.
- W2207714503 hasConcept C143409427 @default.
- W2207714503 hasConcept C154945302 @default.