Matches in SemOpenAlex for { <https://semopenalex.org/work/W2208182502> ?p ?o ?g. }
- W2208182502 abstract "Accurate modeling of acoustic propagation in the ocean waveguide is important to SONAR-performance prediction, and requires, particularly in shallow water environments, characterizing the bottom reflection loss with a precision that databank-based modeling cannot achieve. Recent advances in the technology of autonomous underwater vehicles (AUV) make it possible to envision a survey system for seabed characterization composed of a short array mounted on a small AUV. The bottom power reflection coefficient (and the related reflection loss) can be estimated passively by beamforming the naturally occurring marine ambient-noise acoustic field recorded by a vertical line array of hydrophones. However, the reduced array lengths required by small AUV deployment can hinder the process, due to the inherently poor angular resolution. In this dissertation, original data-processing techniques are presented which, by introducing into the processing chain knowledge derived from physics, can improve the performance of short arrays in this particular task. Particularly, the analysis of a model of the ambient-noise spatial coherence function leads to the development of a new proof of the result at the basis of the bottom reflection-loss estimation technique. The proof highlights some shortcomings inherent in the beamforming operation so far used in this technique. A different algorithm is then proposed, which removes the problem achieving improved performance. Furthermore, another technique is presented that uses data from higher frequencies to estimate the noise spatial coherence function at a lower frequency, for sensor spacing values beyond the physical length of the array. By synthesizing a longer array, the angular resolution of the bottom-loss estimate can be improved, often making use of data at frequencies above the array design frequency, otherwise not utilized for beamforming. The proposed algorithms are demonstrated both in simulation and on real data acquired during several experimental campaigns." @default.
- W2208182502 created "2016-06-24" @default.
- W2208182502 creator A5020103443 @default.
- W2208182502 date "2000-01-01" @default.
- W2208182502 modified "2023-09-24" @default.
- W2208182502 title "Advances in Autonomous-Underwater-Vehicle Based Passive Bottom-Loss Estimation by Processing of Marine Ambient Noise" @default.
- W2208182502 cites W1506558619 @default.
- W2208182502 cites W1546373194 @default.
- W2208182502 cites W1964316951 @default.
- W2208182502 cites W1965037816 @default.
- W2208182502 cites W1968646028 @default.
- W2208182502 cites W1986494237 @default.
- W2208182502 cites W1987620036 @default.
- W2208182502 cites W1991465250 @default.
- W2208182502 cites W1991743243 @default.
- W2208182502 cites W1991938560 @default.
- W2208182502 cites W1996840968 @default.
- W2208182502 cites W1998376319 @default.
- W2208182502 cites W2000344887 @default.
- W2208182502 cites W2008871487 @default.
- W2208182502 cites W2012617211 @default.
- W2208182502 cites W2013337046 @default.
- W2208182502 cites W2017916408 @default.
- W2208182502 cites W2020009991 @default.
- W2208182502 cites W2021443816 @default.
- W2208182502 cites W2021662808 @default.
- W2208182502 cites W2027543586 @default.
- W2208182502 cites W2028177713 @default.
- W2208182502 cites W2041442405 @default.
- W2208182502 cites W2041976256 @default.
- W2208182502 cites W2042279725 @default.
- W2208182502 cites W2048292612 @default.
- W2208182502 cites W2049531450 @default.
- W2208182502 cites W2053606088 @default.
- W2208182502 cites W2056382401 @default.
- W2208182502 cites W2060899109 @default.
- W2208182502 cites W2079290017 @default.
- W2208182502 cites W2084913905 @default.
- W2208182502 cites W2092558931 @default.
- W2208182502 cites W2093225945 @default.
- W2208182502 cites W2093435707 @default.
- W2208182502 cites W2093562719 @default.
- W2208182502 cites W2104151116 @default.
- W2208182502 cites W2108943734 @default.
- W2208182502 cites W2120493554 @default.
- W2208182502 cites W2160426217 @default.
- W2208182502 cites W2162654459 @default.
- W2208182502 cites W2252642279 @default.
- W2208182502 cites W2321993669 @default.
- W2208182502 cites W2508360113 @default.
- W2208182502 doi "https://doi.org/10.15760/etd.2608" @default.
- W2208182502 hasPublicationYear "2000" @default.
- W2208182502 type Work @default.
- W2208182502 sameAs 2208182502 @default.
- W2208182502 citedByCount "0" @default.
- W2208182502 crossrefType "report" @default.
- W2208182502 hasAuthorship W2208182502A5020103443 @default.
- W2208182502 hasBestOaLocation W22081825021 @default.
- W2208182502 hasConcept C104267543 @default.
- W2208182502 hasConcept C111368507 @default.
- W2208182502 hasConcept C114614502 @default.
- W2208182502 hasConcept C115961682 @default.
- W2208182502 hasConcept C121332964 @default.
- W2208182502 hasConcept C127313418 @default.
- W2208182502 hasConcept C133848361 @default.
- W2208182502 hasConcept C154945302 @default.
- W2208182502 hasConcept C199360897 @default.
- W2208182502 hasConcept C203718221 @default.
- W2208182502 hasConcept C205312793 @default.
- W2208182502 hasConcept C24890656 @default.
- W2208182502 hasConcept C2778260390 @default.
- W2208182502 hasConcept C2778545087 @default.
- W2208182502 hasConcept C2781181686 @default.
- W2208182502 hasConcept C33613203 @default.
- W2208182502 hasConcept C33923547 @default.
- W2208182502 hasConcept C41008148 @default.
- W2208182502 hasConcept C54197355 @default.
- W2208182502 hasConcept C554190296 @default.
- W2208182502 hasConcept C555745239 @default.
- W2208182502 hasConcept C62520636 @default.
- W2208182502 hasConcept C65682993 @default.
- W2208182502 hasConcept C67467970 @default.
- W2208182502 hasConcept C76155785 @default.
- W2208182502 hasConcept C98083399 @default.
- W2208182502 hasConcept C99498987 @default.
- W2208182502 hasConceptScore W2208182502C104267543 @default.
- W2208182502 hasConceptScore W2208182502C111368507 @default.
- W2208182502 hasConceptScore W2208182502C114614502 @default.
- W2208182502 hasConceptScore W2208182502C115961682 @default.
- W2208182502 hasConceptScore W2208182502C121332964 @default.
- W2208182502 hasConceptScore W2208182502C127313418 @default.
- W2208182502 hasConceptScore W2208182502C133848361 @default.
- W2208182502 hasConceptScore W2208182502C154945302 @default.
- W2208182502 hasConceptScore W2208182502C199360897 @default.
- W2208182502 hasConceptScore W2208182502C203718221 @default.
- W2208182502 hasConceptScore W2208182502C205312793 @default.
- W2208182502 hasConceptScore W2208182502C24890656 @default.
- W2208182502 hasConceptScore W2208182502C2778260390 @default.
- W2208182502 hasConceptScore W2208182502C2778545087 @default.
- W2208182502 hasConceptScore W2208182502C2781181686 @default.