Matches in SemOpenAlex for { <https://semopenalex.org/work/W2208314483> ?p ?o ?g. }
- W2208314483 endingPage "978" @default.
- W2208314483 startingPage "943" @default.
- W2208314483 abstract "Practical statistical analysis of diffusion tensor images is considered, and we focus primarily on methods that use metrics based on Euclidean distances between powers of diffusion tensors. First, we describe a family of anisotropy measures based on a scale invariant power-Euclidean metric, which are useful for visualisation. Some properties of the measures are derived and practical considerations are discussed, with some examples. Second, we discuss weighted Procrustes methods for diffusion tensor imaging interpolation and smoothing, and we compare methods based on different metrics on a set of examples as well as analytically. We establish a key relationship between the principal-square-root-Euclidean metric and the size-and-shape Procrustes metric on the space of symmetric positive semi-definite tensors. We explain, both analytically and by experiments, why the size-and-shape Procrustes metric may be preferred in practical tasks of interpolation, extrapolation and smoothing, especially when observed tensors are degenerate or when a moderate degree of tensor swelling is desirable. Third, we introduce regularisation methodology, which is demonstrated to be useful for highlighting features of prior interest and potentially for segmentation. Finally, we compare several metrics in a data set of human brain diffusion-weighted magnetic resonance imaging, and point out similarities between several of the non-Euclidean metrics but important differences with the commonly used Euclidean metric." @default.
- W2208314483 created "2016-06-24" @default.
- W2208314483 creator A5004641991 @default.
- W2208314483 creator A5011782760 @default.
- W2208314483 creator A5031248819 @default.
- W2208314483 creator A5051593977 @default.
- W2208314483 creator A5060111294 @default.
- W2208314483 date "2015-09-23" @default.
- W2208314483 modified "2023-09-25" @default.
- W2208314483 title "Regularisation, interpolation and visualisation of diffusion tensor images using non-Euclidean statistics" @default.
- W2208314483 cites W1983496390 @default.
- W2208314483 cites W2006006542 @default.
- W2208314483 cites W2008025478 @default.
- W2208314483 cites W2017492739 @default.
- W2208314483 cites W2032618685 @default.
- W2208314483 cites W2037039643 @default.
- W2208314483 cites W2043538065 @default.
- W2208314483 cites W2047086352 @default.
- W2208314483 cites W2048192550 @default.
- W2208314483 cites W2055444896 @default.
- W2208314483 cites W2059640215 @default.
- W2208314483 cites W2063978378 @default.
- W2208314483 cites W2068836969 @default.
- W2208314483 cites W2078055100 @default.
- W2208314483 cites W2080198834 @default.
- W2208314483 cites W2089267134 @default.
- W2208314483 cites W2092122022 @default.
- W2208314483 cites W2101872040 @default.
- W2208314483 cites W2112759033 @default.
- W2208314483 cites W2119862467 @default.
- W2208314483 cites W2120259577 @default.
- W2208314483 cites W2125391899 @default.
- W2208314483 cites W2142059961 @default.
- W2208314483 cites W2142900310 @default.
- W2208314483 cites W2153637522 @default.
- W2208314483 cites W2255909019 @default.
- W2208314483 cites W2964135630 @default.
- W2208314483 doi "https://doi.org/10.1080/02664763.2015.1080671" @default.
- W2208314483 hasPublicationYear "2015" @default.
- W2208314483 type Work @default.
- W2208314483 sameAs 2208314483 @default.
- W2208314483 citedByCount "15" @default.
- W2208314483 countsByYear W22083144832016 @default.
- W2208314483 countsByYear W22083144832017 @default.
- W2208314483 countsByYear W22083144832018 @default.
- W2208314483 countsByYear W22083144832019 @default.
- W2208314483 countsByYear W22083144832020 @default.
- W2208314483 countsByYear W22083144832021 @default.
- W2208314483 countsByYear W22083144832022 @default.
- W2208314483 crossrefType "journal-article" @default.
- W2208314483 hasAuthorship W2208314483A5004641991 @default.
- W2208314483 hasAuthorship W2208314483A5011782760 @default.
- W2208314483 hasAuthorship W2208314483A5031248819 @default.
- W2208314483 hasAuthorship W2208314483A5051593977 @default.
- W2208314483 hasAuthorship W2208314483A5060111294 @default.
- W2208314483 hasBestOaLocation W22083144832 @default.
- W2208314483 hasConcept C105795698 @default.
- W2208314483 hasConcept C115961682 @default.
- W2208314483 hasConcept C120174047 @default.
- W2208314483 hasConcept C126838900 @default.
- W2208314483 hasConcept C129782007 @default.
- W2208314483 hasConcept C137800194 @default.
- W2208314483 hasConcept C143409427 @default.
- W2208314483 hasConcept C149550507 @default.
- W2208314483 hasConcept C154945302 @default.
- W2208314483 hasConcept C155281189 @default.
- W2208314483 hasConcept C162324750 @default.
- W2208314483 hasConcept C176217482 @default.
- W2208314483 hasConcept C202444582 @default.
- W2208314483 hasConcept C21547014 @default.
- W2208314483 hasConcept C2524010 @default.
- W2208314483 hasConcept C28826006 @default.
- W2208314483 hasConcept C33923547 @default.
- W2208314483 hasConcept C3770464 @default.
- W2208314483 hasConcept C41008148 @default.
- W2208314483 hasConcept C71924100 @default.
- W2208314483 hasConceptScore W2208314483C105795698 @default.
- W2208314483 hasConceptScore W2208314483C115961682 @default.
- W2208314483 hasConceptScore W2208314483C120174047 @default.
- W2208314483 hasConceptScore W2208314483C126838900 @default.
- W2208314483 hasConceptScore W2208314483C129782007 @default.
- W2208314483 hasConceptScore W2208314483C137800194 @default.
- W2208314483 hasConceptScore W2208314483C143409427 @default.
- W2208314483 hasConceptScore W2208314483C149550507 @default.
- W2208314483 hasConceptScore W2208314483C154945302 @default.
- W2208314483 hasConceptScore W2208314483C155281189 @default.
- W2208314483 hasConceptScore W2208314483C162324750 @default.
- W2208314483 hasConceptScore W2208314483C176217482 @default.
- W2208314483 hasConceptScore W2208314483C202444582 @default.
- W2208314483 hasConceptScore W2208314483C21547014 @default.
- W2208314483 hasConceptScore W2208314483C2524010 @default.
- W2208314483 hasConceptScore W2208314483C28826006 @default.
- W2208314483 hasConceptScore W2208314483C33923547 @default.
- W2208314483 hasConceptScore W2208314483C3770464 @default.
- W2208314483 hasConceptScore W2208314483C41008148 @default.
- W2208314483 hasConceptScore W2208314483C71924100 @default.
- W2208314483 hasFunder F4320319990 @default.
- W2208314483 hasFunder F4320320006 @default.