Matches in SemOpenAlex for { <https://semopenalex.org/work/W2208514259> ?p ?o ?g. }
- W2208514259 abstract "We introduce methods to cope with self-similar sets when we do not assume any separation condition. For a self-similar set K ⊆ ℝᵈ we establish a similarity dimension-like formula for Hausdorff dimension regardless of any separation condition. By the application of this result we deduce that the Hausdorff measure and Hausdorff content of K are equal, which implies that K is Ahlfors regular if and only if Hᵗ (K) > 0 where t = dim[sub]H K. We further show that if t = dim[sub]H K 0 is also equivalent to the weak separation property. Regarding Hausdorff dimension, we give a dimension approximation method that provides a tool to generalise results on non-overlapping self-similar sets to overlapping self-similar sets.We investigate how the Hausdorff dimension and measure of a self-similar setK ⊆ ℝᵈ behave under linear mappings. This depends on the nature of the group T generated by the orthogonal parts of the defining maps of K. We show that if T is finite then every linear image of K is a graph directed attractor and there exists at least one projection of K such that the dimension drops under projection. In general, with no restrictions on T we establish that Hᵗ (L ∘ O(K)) = Hᵗ (L(K)) for every element O of the closure of T , where L is a linear map and t = dim[sub]H K. We also prove that for disjoint subsets A and B of K we have that Hᵗ (L(A) ∩ L(B)) = 0. Hochman and Shmerkin showed that if T is dense in SO(d; ℝ) and the strong separation condition is satisfied then dim[sub]H (g(K)) = min {dim[sub]H K; l} for every continuously differentiable map g of rank l. We deduce the same result without any separation condition and we generalize a result of Eroglu by obtaining that Hᵗ (g(K)) = 0.We show that for the attractor (K1, … ,Kq) of a graph directed iterated function system, for each 1 ≤ j ≤ q and e > 0 there exists a self-similar set K ⊆ Kj that satisfies the strong separation condition and dim[sub]H Kj - e < dim[sub]H K. We show that we can further assume convenient conditions on the orthogonal parts and similarity ratios of the defining similarities of K. Using this property we obtain results on a range of topics including on dimensions of projections, intersections, distance sets and sums and products of sets.We study the situations where the Hausdorff measure and Hausdorff content of a set are equal in the critical dimension. Our main result here shows that this equality holds for any subset of a set corresponding to a nontrivial cylinder of an irreducible subshift of finite type, and thus also for any self-similar or graph directed self-similar set, regardless of separation conditions. The main tool in the proof is an exhaustion lemma for Hausdorff measure based on the Vitali's Covering Theorem. We also give several examples showing that one cannot hope for the equality to hold in general if one moves in a number of the natural directions away from `self-similar'. Finally we consider an analogous version of the problem for packing measure. In this case we need the strong separation…" @default.
- W2208514259 created "2016-06-24" @default.
- W2208514259 creator A5049030218 @default.
- W2208514259 date "2015-11-30" @default.
- W2208514259 modified "2023-09-23" @default.
- W2208514259 title "Dimension and measure theory of self-similar structures with no separation condition" @default.
- W2208514259 cites W1499899548 @default.
- W2208514259 cites W1500921805 @default.
- W2208514259 cites W1504907986 @default.
- W2208514259 cites W1522020530 @default.
- W2208514259 cites W1565227623 @default.
- W2208514259 cites W1565611252 @default.
- W2208514259 cites W1579743691 @default.
- W2208514259 cites W1595814451 @default.
- W2208514259 cites W1603226434 @default.
- W2208514259 cites W1624591558 @default.
- W2208514259 cites W1766249893 @default.
- W2208514259 cites W1966153159 @default.
- W2208514259 cites W1969918066 @default.
- W2208514259 cites W1986005541 @default.
- W2208514259 cites W1988442902 @default.
- W2208514259 cites W1995922467 @default.
- W2208514259 cites W1997376776 @default.
- W2208514259 cites W2001345853 @default.
- W2208514259 cites W2006059540 @default.
- W2208514259 cites W2029275558 @default.
- W2208514259 cites W2029276566 @default.
- W2208514259 cites W2052521236 @default.
- W2208514259 cites W2067849838 @default.
- W2208514259 cites W2070054547 @default.
- W2208514259 cites W2073997685 @default.
- W2208514259 cites W2075508378 @default.
- W2208514259 cites W2076597612 @default.
- W2208514259 cites W2078206416 @default.
- W2208514259 cites W2080003810 @default.
- W2208514259 cites W2085321999 @default.
- W2208514259 cites W2092627867 @default.
- W2208514259 cites W2120045167 @default.
- W2208514259 cites W2131700155 @default.
- W2208514259 cites W2148579348 @default.
- W2208514259 cites W2152491771 @default.
- W2208514259 cites W2159258685 @default.
- W2208514259 cites W280881590 @default.
- W2208514259 cites W2895379860 @default.
- W2208514259 cites W2964268537 @default.
- W2208514259 cites W3105879936 @default.
- W2208514259 hasPublicationYear "2015" @default.
- W2208514259 type Work @default.
- W2208514259 sameAs 2208514259 @default.
- W2208514259 citedByCount "1" @default.
- W2208514259 countsByYear W22085142592018 @default.
- W2208514259 crossrefType "dissertation" @default.
- W2208514259 hasAuthorship W2208514259A5049030218 @default.
- W2208514259 hasConcept C101597101 @default.
- W2208514259 hasConcept C11413529 @default.
- W2208514259 hasConcept C114614502 @default.
- W2208514259 hasConcept C115311070 @default.
- W2208514259 hasConcept C118615104 @default.
- W2208514259 hasConcept C134306372 @default.
- W2208514259 hasConcept C141898687 @default.
- W2208514259 hasConcept C143924541 @default.
- W2208514259 hasConcept C194198291 @default.
- W2208514259 hasConcept C26546657 @default.
- W2208514259 hasConcept C2780009758 @default.
- W2208514259 hasConcept C28235433 @default.
- W2208514259 hasConcept C33676613 @default.
- W2208514259 hasConcept C33923547 @default.
- W2208514259 hasConcept C40636538 @default.
- W2208514259 hasConcept C41008148 @default.
- W2208514259 hasConcept C45340560 @default.
- W2208514259 hasConcept C57493831 @default.
- W2208514259 hasConcept C73225184 @default.
- W2208514259 hasConcept C77088390 @default.
- W2208514259 hasConceptScore W2208514259C101597101 @default.
- W2208514259 hasConceptScore W2208514259C11413529 @default.
- W2208514259 hasConceptScore W2208514259C114614502 @default.
- W2208514259 hasConceptScore W2208514259C115311070 @default.
- W2208514259 hasConceptScore W2208514259C118615104 @default.
- W2208514259 hasConceptScore W2208514259C134306372 @default.
- W2208514259 hasConceptScore W2208514259C141898687 @default.
- W2208514259 hasConceptScore W2208514259C143924541 @default.
- W2208514259 hasConceptScore W2208514259C194198291 @default.
- W2208514259 hasConceptScore W2208514259C26546657 @default.
- W2208514259 hasConceptScore W2208514259C2780009758 @default.
- W2208514259 hasConceptScore W2208514259C28235433 @default.
- W2208514259 hasConceptScore W2208514259C33676613 @default.
- W2208514259 hasConceptScore W2208514259C33923547 @default.
- W2208514259 hasConceptScore W2208514259C40636538 @default.
- W2208514259 hasConceptScore W2208514259C41008148 @default.
- W2208514259 hasConceptScore W2208514259C45340560 @default.
- W2208514259 hasConceptScore W2208514259C57493831 @default.
- W2208514259 hasConceptScore W2208514259C73225184 @default.
- W2208514259 hasConceptScore W2208514259C77088390 @default.
- W2208514259 hasLocation W22085142591 @default.
- W2208514259 hasOpenAccess W2208514259 @default.
- W2208514259 hasPrimaryLocation W22085142591 @default.
- W2208514259 hasRelatedWork W1481251858 @default.
- W2208514259 hasRelatedWork W1500831531 @default.
- W2208514259 hasRelatedWork W1993404610 @default.
- W2208514259 hasRelatedWork W2002273100 @default.