Matches in SemOpenAlex for { <https://semopenalex.org/work/W2208555212> ?p ?o ?g. }
- W2208555212 abstract "Since the 1920s, researchers in population genetics have developed mathematical models to explain how a species evolves. With the rise of DNA sequencing over the past decade, we now have the data to use these models to answer real questions in evolutionary biology. However, the sheer amount of data and the time complexity of the models makes inference extremely challenging. Computer science has therefore become an essential tool for bridging theoretical models and modern sequencing data.In this thesis we present two novel algorithms that make use of DNA sequencing data in a principled yet practical way. The first method estimates the history of effective population sizes of a species using a coalescent hidden Markov model (HMM). Previous coalescent HMMs could only handle a few sequences, since the set of coalescent trees makes the state- space prohibitively large. Our algorithm uses a modified state-space to make inference computationally feasible while still retaining the essential genealogical features of a sample. We apply this algorithm, called diCal, to human data to learn more about major events in human history, such as the out-of-Africa migration. We also provide several extensions to diCal that make the computation faster, more automated, and applicable in a wider variety of scenarios.The second method is an algorithm for jointly estimating effective population size changes and natural selection. These two factors can leave similar traces in genomic data, and the models that would describe both are computationally intractable. Our method uses a machine learning technique called deep learning to make the inference procedure robust and efficient. Deep learning automatically teases out important features of the data, but previously had not been used in population genetics. We apply this method to African Drosophila melanogaster data to jointly infer their population size changes and classify each region of their genome as neutral or under natural selection. We considered three types of selection: hard sweeps, soft sweeps, and balancing selection. To create a sophisticated framework for population genomic inference, in the future it would be promising to combine machine learning algorithms with biologically-inspired coalescent modeling." @default.
- W2208555212 created "2016-06-24" @default.
- W2208555212 creator A5074957818 @default.
- W2208555212 date "2015-01-01" @default.
- W2208555212 modified "2023-09-27" @default.
- W2208555212 title "Scalable Algorithms for Population Genomic Inference" @default.
- W2208555212 cites W1512625811 @default.
- W2208555212 cites W1525240758 @default.
- W2208555212 cites W1539979543 @default.
- W2208555212 cites W1546037769 @default.
- W2208555212 cites W1547520239 @default.
- W2208555212 cites W1574652048 @default.
- W2208555212 cites W1594600122 @default.
- W2208555212 cites W1772281102 @default.
- W2208555212 cites W1793259860 @default.
- W2208555212 cites W1897064680 @default.
- W2208555212 cites W1902190630 @default.
- W2208555212 cites W1904365287 @default.
- W2208555212 cites W1962960380 @default.
- W2208555212 cites W1964224776 @default.
- W2208555212 cites W1964547306 @default.
- W2208555212 cites W1965618186 @default.
- W2208555212 cites W1967144980 @default.
- W2208555212 cites W1975951935 @default.
- W2208555212 cites W1976593262 @default.
- W2208555212 cites W1977169047 @default.
- W2208555212 cites W1978767356 @default.
- W2208555212 cites W1980496331 @default.
- W2208555212 cites W1982516282 @default.
- W2208555212 cites W1984324163 @default.
- W2208555212 cites W1988115241 @default.
- W2208555212 cites W1990824786 @default.
- W2208555212 cites W1996270078 @default.
- W2208555212 cites W2001707565 @default.
- W2208555212 cites W2002715980 @default.
- W2208555212 cites W2005739865 @default.
- W2208555212 cites W2020302614 @default.
- W2208555212 cites W2020331089 @default.
- W2208555212 cites W2021540124 @default.
- W2208555212 cites W2034795216 @default.
- W2208555212 cites W2038686775 @default.
- W2208555212 cites W2040155323 @default.
- W2208555212 cites W2042529907 @default.
- W2208555212 cites W2044419511 @default.
- W2208555212 cites W2047106660 @default.
- W2208555212 cites W2052962361 @default.
- W2208555212 cites W2055311639 @default.
- W2208555212 cites W2057692000 @default.
- W2208555212 cites W2058348475 @default.
- W2208555212 cites W2062227835 @default.
- W2208555212 cites W2062665066 @default.
- W2208555212 cites W2067218923 @default.
- W2208555212 cites W2072419029 @default.
- W2208555212 cites W2077663320 @default.
- W2208555212 cites W2088338354 @default.
- W2208555212 cites W2091705028 @default.
- W2208555212 cites W2094608047 @default.
- W2208555212 cites W2099428625 @default.
- W2208555212 cites W2100495367 @default.
- W2208555212 cites W2102951980 @default.
- W2208555212 cites W2103496339 @default.
- W2208555212 cites W2105799847 @default.
- W2208555212 cites W2107746932 @default.
- W2208555212 cites W2111063423 @default.
- W2208555212 cites W2112796928 @default.
- W2208555212 cites W2114214628 @default.
- W2208555212 cites W2114493739 @default.
- W2208555212 cites W2115596355 @default.
- W2208555212 cites W2115809399 @default.
- W2208555212 cites W2116416291 @default.
- W2208555212 cites W2121794292 @default.
- W2208555212 cites W2122244057 @default.
- W2208555212 cites W2123360307 @default.
- W2208555212 cites W2123368367 @default.
- W2208555212 cites W2125300654 @default.
- W2208555212 cites W2127055349 @default.
- W2208555212 cites W2128084896 @default.
- W2208555212 cites W2128396789 @default.
- W2208555212 cites W2129436708 @default.
- W2208555212 cites W2130116386 @default.
- W2208555212 cites W2132424367 @default.
- W2208555212 cites W2133148918 @default.
- W2208555212 cites W2135833910 @default.
- W2208555212 cites W2136557734 @default.
- W2208555212 cites W2137706757 @default.
- W2208555212 cites W2140449543 @default.
- W2208555212 cites W2141125852 @default.
- W2208555212 cites W2141772270 @default.
- W2208555212 cites W2142677693 @default.
- W2208555212 cites W2143612262 @default.
- W2208555212 cites W2144015117 @default.
- W2208555212 cites W2144658220 @default.
- W2208555212 cites W2145004732 @default.
- W2208555212 cites W2145703917 @default.
- W2208555212 cites W2145913466 @default.
- W2208555212 cites W2146066805 @default.
- W2208555212 cites W2146803704 @default.
- W2208555212 cites W2147911093 @default.
- W2208555212 cites W2148351363 @default.
- W2208555212 cites W2152832004 @default.