Matches in SemOpenAlex for { <https://semopenalex.org/work/W2210101650> ?p ?o ?g. }
- W2210101650 endingPage "70" @default.
- W2210101650 startingPage "61" @default.
- W2210101650 abstract "To resolve the overlapping linear sweep voltammetric peaks (LSVPs) in the case of small signals overlapping to a very big one, a parameter optimization method based on state-transition-algorithm (STA) is investigated. First, four special state transformation operators of STA are introduced and a parameter optimization method is proposed. Then, the overlapping LSVPs are obtained by simultaneously determining trace amounts of Cd2 + and Co2 + in the presence of a high concentration of Zn2 + based on optimized reagents. Finally, overlapping LSVPs are resolved into independent sub-peaks using the proposed method. The resolution results show that the goodness-of-fit of fitting curve in describing the overlapping LSVPs is more than 97%. It indicates that the proposed method is reasonable and effective for the resolution of overlapping LSVPs in the case of high signal ratio which is more than 50." @default.
- W2210101650 created "2016-06-24" @default.
- W2210101650 creator A5029587382 @default.
- W2210101650 creator A5034607072 @default.
- W2210101650 creator A5040314307 @default.
- W2210101650 creator A5051307140 @default.
- W2210101650 creator A5054863124 @default.
- W2210101650 creator A5083335678 @default.
- W2210101650 date "2016-02-01" @default.
- W2210101650 modified "2023-10-16" @default.
- W2210101650 title "State-transition-algorithm-based resolution for overlapping linear sweep voltammetric peaks with high signal ratio" @default.
- W2210101650 cites W1648376981 @default.
- W2210101650 cites W1969797927 @default.
- W2210101650 cites W1973623788 @default.
- W2210101650 cites W1982997477 @default.
- W2210101650 cites W1996867504 @default.
- W2210101650 cites W1998160783 @default.
- W2210101650 cites W2001492509 @default.
- W2210101650 cites W2002009178 @default.
- W2210101650 cites W2012148059 @default.
- W2210101650 cites W2016071254 @default.
- W2210101650 cites W2020466329 @default.
- W2210101650 cites W2032910026 @default.
- W2210101650 cites W2035988272 @default.
- W2210101650 cites W2036123789 @default.
- W2210101650 cites W2036226493 @default.
- W2210101650 cites W2037893212 @default.
- W2210101650 cites W2047663425 @default.
- W2210101650 cites W2049020618 @default.
- W2210101650 cites W2050933393 @default.
- W2210101650 cites W2056269170 @default.
- W2210101650 cites W2059399078 @default.
- W2210101650 cites W2062786850 @default.
- W2210101650 cites W2065196408 @default.
- W2210101650 cites W2067979028 @default.
- W2210101650 cites W2073784503 @default.
- W2210101650 cites W2086858955 @default.
- W2210101650 cites W2090847678 @default.
- W2210101650 cites W2094807277 @default.
- W2210101650 cites W2148577855 @default.
- W2210101650 cites W2148963602 @default.
- W2210101650 cites W2320003029 @default.
- W2210101650 cites W2328658572 @default.
- W2210101650 cites W2478378711 @default.
- W2210101650 cites W253944914 @default.
- W2210101650 cites W289035074 @default.
- W2210101650 cites W3104129232 @default.
- W2210101650 cites W809482065 @default.
- W2210101650 cites W833944784 @default.
- W2210101650 cites W2614380012 @default.
- W2210101650 doi "https://doi.org/10.1016/j.chemolab.2015.12.008" @default.
- W2210101650 hasPublicationYear "2016" @default.
- W2210101650 type Work @default.
- W2210101650 sameAs 2210101650 @default.
- W2210101650 citedByCount "21" @default.
- W2210101650 countsByYear W22101016502016 @default.
- W2210101650 countsByYear W22101016502017 @default.
- W2210101650 countsByYear W22101016502018 @default.
- W2210101650 countsByYear W22101016502019 @default.
- W2210101650 countsByYear W22101016502021 @default.
- W2210101650 countsByYear W22101016502023 @default.
- W2210101650 crossrefType "journal-article" @default.
- W2210101650 hasAuthorship W2210101650A5029587382 @default.
- W2210101650 hasAuthorship W2210101650A5034607072 @default.
- W2210101650 hasAuthorship W2210101650A5040314307 @default.
- W2210101650 hasAuthorship W2210101650A5051307140 @default.
- W2210101650 hasAuthorship W2210101650A5054863124 @default.
- W2210101650 hasAuthorship W2210101650A5083335678 @default.
- W2210101650 hasConcept C104317684 @default.
- W2210101650 hasConcept C113196181 @default.
- W2210101650 hasConcept C11413529 @default.
- W2210101650 hasConcept C127313418 @default.
- W2210101650 hasConcept C138268822 @default.
- W2210101650 hasConcept C138885662 @default.
- W2210101650 hasConcept C154945302 @default.
- W2210101650 hasConcept C185592680 @default.
- W2210101650 hasConcept C199360897 @default.
- W2210101650 hasConcept C204241405 @default.
- W2210101650 hasConcept C2779843651 @default.
- W2210101650 hasConcept C3020199158 @default.
- W2210101650 hasConcept C33923547 @default.
- W2210101650 hasConcept C41008148 @default.
- W2210101650 hasConcept C41895202 @default.
- W2210101650 hasConcept C43617362 @default.
- W2210101650 hasConcept C48103436 @default.
- W2210101650 hasConcept C55493867 @default.
- W2210101650 hasConcept C62649853 @default.
- W2210101650 hasConcept C75291252 @default.
- W2210101650 hasConceptScore W2210101650C104317684 @default.
- W2210101650 hasConceptScore W2210101650C113196181 @default.
- W2210101650 hasConceptScore W2210101650C11413529 @default.
- W2210101650 hasConceptScore W2210101650C127313418 @default.
- W2210101650 hasConceptScore W2210101650C138268822 @default.
- W2210101650 hasConceptScore W2210101650C138885662 @default.
- W2210101650 hasConceptScore W2210101650C154945302 @default.
- W2210101650 hasConceptScore W2210101650C185592680 @default.
- W2210101650 hasConceptScore W2210101650C199360897 @default.
- W2210101650 hasConceptScore W2210101650C204241405 @default.