Matches in SemOpenAlex for { <https://semopenalex.org/work/W2210142110> ?p ?o ?g. }
- W2210142110 endingPage "150" @default.
- W2210142110 startingPage "139" @default.
- W2210142110 abstract "In this paper, an effective adaptive control approach is constructed to stabilize a class of nonlinear discrete-time systems, which contain unknown functions, unknown dead-zone input, and unknown control direction. Different from linear dead zone, the dead zone, in this paper, is a kind of nonlinear dead zone. To overcome the noncausal problem, which leads to the control scheme infeasible, the systems can be transformed into a m -step-ahead predictor. Due to nonlinear dead-zone appearance, the transformed predictor still contains the nonaffine function. In addition, it is assumed that the gain function of dead-zone input and the control direction are unknown. These conditions bring about the difficulties and the complicacy in the controller design. Thus, the implicit function theorem is applied to deal with nonaffine dead-zone appearance, the problem caused by the unknown control direction can be resolved through applying the discrete Nussbaum gain, and the neural networks are used to approximate the unknown function. Based on the Lyapunov theory, all the signals of the resulting closed-loop system are proved to be semiglobal uniformly ultimately bounded. Moreover, the tracking error is proved to be regulated to a small neighborhood around zero. The feasibility of the proposed approach is demonstrated by a simulation example." @default.
- W2210142110 created "2016-06-24" @default.
- W2210142110 creator A5020522846 @default.
- W2210142110 creator A5049934246 @default.
- W2210142110 creator A5080368180 @default.
- W2210142110 creator A5081193547 @default.
- W2210142110 date "2016-01-01" @default.
- W2210142110 modified "2023-10-16" @default.
- W2210142110 title "A Unified Approach to Adaptive Neural Control for Nonlinear Discrete-Time Systems With Nonlinear Dead-Zone Input" @default.
- W2210142110 cites W1162378864 @default.
- W2210142110 cites W1504649730 @default.
- W2210142110 cites W1973033772 @default.
- W2210142110 cites W1980491877 @default.
- W2210142110 cites W1983089547 @default.
- W2210142110 cites W1983294924 @default.
- W2210142110 cites W1986024064 @default.
- W2210142110 cites W1986864433 @default.
- W2210142110 cites W1987583608 @default.
- W2210142110 cites W1988182293 @default.
- W2210142110 cites W1989054487 @default.
- W2210142110 cites W1989178142 @default.
- W2210142110 cites W1990026397 @default.
- W2210142110 cites W1992410217 @default.
- W2210142110 cites W1995299431 @default.
- W2210142110 cites W1997136294 @default.
- W2210142110 cites W1997603681 @default.
- W2210142110 cites W1999213690 @default.
- W2210142110 cites W1999678919 @default.
- W2210142110 cites W2006827383 @default.
- W2210142110 cites W2007155433 @default.
- W2210142110 cites W2007366296 @default.
- W2210142110 cites W2011310556 @default.
- W2210142110 cites W2012451615 @default.
- W2210142110 cites W2020047580 @default.
- W2210142110 cites W2023883583 @default.
- W2210142110 cites W2040622182 @default.
- W2210142110 cites W2048506187 @default.
- W2210142110 cites W2048687352 @default.
- W2210142110 cites W2048707341 @default.
- W2210142110 cites W2049933349 @default.
- W2210142110 cites W2054881597 @default.
- W2210142110 cites W2060686658 @default.
- W2210142110 cites W2064551186 @default.
- W2210142110 cites W2072627105 @default.
- W2210142110 cites W2073280133 @default.
- W2210142110 cites W2074715768 @default.
- W2210142110 cites W2082526944 @default.
- W2210142110 cites W2087084782 @default.
- W2210142110 cites W2091919425 @default.
- W2210142110 cites W2092707876 @default.
- W2210142110 cites W2094287485 @default.
- W2210142110 cites W2095739959 @default.
- W2210142110 cites W2098035803 @default.
- W2210142110 cites W2098732944 @default.
- W2210142110 cites W2103700523 @default.
- W2210142110 cites W2111980775 @default.
- W2210142110 cites W2113442785 @default.
- W2210142110 cites W2114847465 @default.
- W2210142110 cites W2117945258 @default.
- W2210142110 cites W2125568460 @default.
- W2210142110 cites W2129513384 @default.
- W2210142110 cites W2129915998 @default.
- W2210142110 cites W2131635860 @default.
- W2210142110 cites W2137092694 @default.
- W2210142110 cites W2137320068 @default.
- W2210142110 cites W2151621171 @default.
- W2210142110 cites W2153173318 @default.
- W2210142110 cites W2154095835 @default.
- W2210142110 cites W2155947439 @default.
- W2210142110 cites W2156629001 @default.
- W2210142110 cites W2158137022 @default.
- W2210142110 cites W2159538611 @default.
- W2210142110 cites W2162601317 @default.
- W2210142110 cites W2168662436 @default.
- W2210142110 cites W2217539471 @default.
- W2210142110 cites W2767784613 @default.
- W2210142110 cites W988992821 @default.
- W2210142110 doi "https://doi.org/10.1109/tnnls.2015.2471262" @default.
- W2210142110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26353383" @default.
- W2210142110 hasPublicationYear "2016" @default.
- W2210142110 type Work @default.
- W2210142110 sameAs 2210142110 @default.
- W2210142110 citedByCount "101" @default.
- W2210142110 countsByYear W22101421102015 @default.
- W2210142110 countsByYear W22101421102016 @default.
- W2210142110 countsByYear W22101421102017 @default.
- W2210142110 countsByYear W22101421102018 @default.
- W2210142110 countsByYear W22101421102019 @default.
- W2210142110 countsByYear W22101421102020 @default.
- W2210142110 countsByYear W22101421102021 @default.
- W2210142110 countsByYear W22101421102022 @default.
- W2210142110 countsByYear W22101421102023 @default.
- W2210142110 crossrefType "journal-article" @default.
- W2210142110 hasAuthorship W2210142110A5020522846 @default.
- W2210142110 hasAuthorship W2210142110A5049934246 @default.
- W2210142110 hasAuthorship W2210142110A5080368180 @default.
- W2210142110 hasAuthorship W2210142110A5081193547 @default.
- W2210142110 hasConcept C107464732 @default.