Matches in SemOpenAlex for { <https://semopenalex.org/work/W2211265699> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2211265699 abstract "In this thesis, we explore the application of data mining and machine learning techniques to several practical problems. These problems have roots in various fields such as social science, economics, and political science. We show that computer science techniques enable us to bring significant contributions to solving them. Moreover, we show that combining several models or datasets related to the problem we are trying to solve is key to the quality of the solution we find. The first application we consider is human mobility prediction. We describe our winning contribution to the Nokia Mobile Data Challenge, in which we predict the next location a user will visit based on his history and the current context. We first highlight some data characteristics that contribute to the difficulty of the task, such as sparsity and non-stationarity. Then, we present three families of models and observe that, even though their average accuracies are similar, their performances vary significantly across users. To take advantage of this diversity, we introduce several strategies to combine models, and show that the combinations outperform any individual predictor. The second application we examine is predicting the success of crowdfunding campaigns. We collected data on Kickstarter (one of the most popular crowdfunding platforms) in order to predict whether a campaign will reach its funding goal or not. We show that we obtain good performances by simply using information about money, but that combining this information with social features extracted from Kickstarter's social graph and Twitter improves early predictions. In particular, predictions made a few hours after the beginning of a campaign are improved by 4%, to reach an accuracy of 76%. Then, we move to the realms of politics, and first investigate the ideologies of politicians. Using their opinion on several aspects of politics, gathered on a voting advice application (VAA), we show that the themes that divide politicians the most are the ones that we usually associate with left-wing/right-wing and liberal/conservative, thus validating the simplified two-dimensional view of the political system that many people use. We bring attention to the potentially malicious uses of VAAs by creating a fake candidate profile that is able to gather twice as many voting recommendations as any other. To counter this, we demonstrate that we are able to monitor politicians after they were elected, and potentially detect changes of opinion, by combining the data extracted from the VAA with the votes that they cast at the Parliament. Finally, we study the outcome of issue votes. We first show that simply considering vote results at a fine geographical level is sufficient to highlight characteristic geographical voting patterns across a country, and their evolution over time. It also enables us to find representative regions that are crucial in determining the national outcome of a vote. We then demonstrate that predicting the actual result of a vote in all regions (in opposition to the binary national outcome) is a much harder task that requires combining data about regions and votes themselves to obtain good performances. We compare the use of Bayesian and non-Bayesian models that combine matrix-factorization and regression. We show that, here too, combining appropriate models and datasets improves the quality of the predictions, and that Bayesian methods give better estimates of the model's hyperparameters." @default.
- W2211265699 created "2016-06-24" @default.
- W2211265699 creator A5012904573 @default.
- W2211265699 date "2015-01-01" @default.
- W2211265699 modified "2023-09-23" @default.
- W2211265699 title "Combine and Conquer" @default.
- W2211265699 doi "https://doi.org/10.5075/epfl-thesis-6831" @default.
- W2211265699 hasPublicationYear "2015" @default.
- W2211265699 type Work @default.
- W2211265699 sameAs 2211265699 @default.
- W2211265699 citedByCount "0" @default.
- W2211265699 crossrefType "journal-article" @default.
- W2211265699 hasAuthorship W2211265699A5012904573 @default.
- W2211265699 hasConcept C10138342 @default.
- W2211265699 hasConcept C111472728 @default.
- W2211265699 hasConcept C11413529 @default.
- W2211265699 hasConcept C119857082 @default.
- W2211265699 hasConcept C124101348 @default.
- W2211265699 hasConcept C126349790 @default.
- W2211265699 hasConcept C127413603 @default.
- W2211265699 hasConcept C132525143 @default.
- W2211265699 hasConcept C136764020 @default.
- W2211265699 hasConcept C138885662 @default.
- W2211265699 hasConcept C151730666 @default.
- W2211265699 hasConcept C154945302 @default.
- W2211265699 hasConcept C162324750 @default.
- W2211265699 hasConcept C182306322 @default.
- W2211265699 hasConcept C201995342 @default.
- W2211265699 hasConcept C2522767166 @default.
- W2211265699 hasConcept C26517878 @default.
- W2211265699 hasConcept C2779343474 @default.
- W2211265699 hasConcept C2779530757 @default.
- W2211265699 hasConcept C2780451532 @default.
- W2211265699 hasConcept C38652104 @default.
- W2211265699 hasConcept C41008148 @default.
- W2211265699 hasConcept C518677369 @default.
- W2211265699 hasConcept C71559656 @default.
- W2211265699 hasConcept C80444323 @default.
- W2211265699 hasConcept C86803240 @default.
- W2211265699 hasConceptScore W2211265699C10138342 @default.
- W2211265699 hasConceptScore W2211265699C111472728 @default.
- W2211265699 hasConceptScore W2211265699C11413529 @default.
- W2211265699 hasConceptScore W2211265699C119857082 @default.
- W2211265699 hasConceptScore W2211265699C124101348 @default.
- W2211265699 hasConceptScore W2211265699C126349790 @default.
- W2211265699 hasConceptScore W2211265699C127413603 @default.
- W2211265699 hasConceptScore W2211265699C132525143 @default.
- W2211265699 hasConceptScore W2211265699C136764020 @default.
- W2211265699 hasConceptScore W2211265699C138885662 @default.
- W2211265699 hasConceptScore W2211265699C151730666 @default.
- W2211265699 hasConceptScore W2211265699C154945302 @default.
- W2211265699 hasConceptScore W2211265699C162324750 @default.
- W2211265699 hasConceptScore W2211265699C182306322 @default.
- W2211265699 hasConceptScore W2211265699C201995342 @default.
- W2211265699 hasConceptScore W2211265699C2522767166 @default.
- W2211265699 hasConceptScore W2211265699C26517878 @default.
- W2211265699 hasConceptScore W2211265699C2779343474 @default.
- W2211265699 hasConceptScore W2211265699C2779530757 @default.
- W2211265699 hasConceptScore W2211265699C2780451532 @default.
- W2211265699 hasConceptScore W2211265699C38652104 @default.
- W2211265699 hasConceptScore W2211265699C41008148 @default.
- W2211265699 hasConceptScore W2211265699C518677369 @default.
- W2211265699 hasConceptScore W2211265699C71559656 @default.
- W2211265699 hasConceptScore W2211265699C80444323 @default.
- W2211265699 hasConceptScore W2211265699C86803240 @default.
- W2211265699 hasLocation W22112656991 @default.
- W2211265699 hasOpenAccess W2211265699 @default.
- W2211265699 hasPrimaryLocation W22112656991 @default.
- W2211265699 hasRelatedWork W13680522 @default.
- W2211265699 hasRelatedWork W1552584822 @default.
- W2211265699 hasRelatedWork W1957899735 @default.
- W2211265699 hasRelatedWork W2172013605 @default.
- W2211265699 hasRelatedWork W2202773280 @default.
- W2211265699 hasRelatedWork W2282361021 @default.
- W2211265699 hasRelatedWork W2282821441 @default.
- W2211265699 hasRelatedWork W2293175946 @default.
- W2211265699 hasRelatedWork W2397821426 @default.
- W2211265699 hasRelatedWork W2407689222 @default.
- W2211265699 hasRelatedWork W2586891031 @default.
- W2211265699 hasRelatedWork W2766555791 @default.
- W2211265699 hasRelatedWork W2995540727 @default.
- W2211265699 hasRelatedWork W3001821705 @default.
- W2211265699 hasRelatedWork W3021728680 @default.
- W2211265699 hasRelatedWork W3169134411 @default.
- W2211265699 hasRelatedWork W56307640 @default.
- W2211265699 hasRelatedWork W76722536 @default.
- W2211265699 hasRelatedWork W827319959 @default.
- W2211265699 hasRelatedWork W841708381 @default.
- W2211265699 isParatext "false" @default.
- W2211265699 isRetracted "false" @default.
- W2211265699 magId "2211265699" @default.
- W2211265699 workType "article" @default.