Matches in SemOpenAlex for { <https://semopenalex.org/work/W22116168> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W22116168 abstract "This paper examines a level of categorization performance in a real-life collection of abstract articles in the fields of science and technology, and tests the optimal size of documents per category in a training set using a kNN classifier. The corpus is built by choosing categories that hold more than 2,556 documents first, and then 2,556 documents per category are randomly selected. It is further divided into eight subsets of different size of training documents : each set is randomly selected to build training documents ranging from 20 documents (Tr-20) to 2,000 documents (Tr-2000) per category. The categorization performances of the 8 subsets are compared. The average performance of the eight subsets is 30% in measure which is relatively poor compared to the findings of previous studies. The experimental results suggest that among the eight subsets the Tr-100 appears to be the most optimal size for training a km classifier In addition, the correctness of subject categories assigned to the training sets is probed by manually reclassifying the training sets in order to support the above conclusion by establishing a relation between and the correctness and categorization performance." @default.
- W22116168 created "2016-06-24" @default.
- W22116168 date "2006-12-29" @default.
- W22116168 modified "2023-09-26" @default.
- W22116168 title "Optimization of Number of Training Documents in Text Categorization" @default.
- W22116168 doi "https://doi.org/10.3743/kosim.2006.23.4.277" @default.
- W22116168 hasPublicationYear "2006" @default.
- W22116168 type Work @default.
- W22116168 sameAs 22116168 @default.
- W22116168 citedByCount "0" @default.
- W22116168 crossrefType "journal-article" @default.
- W22116168 hasBestOaLocation W221161681 @default.
- W22116168 hasConcept C154945302 @default.
- W22116168 hasConcept C177264268 @default.
- W22116168 hasConcept C199360897 @default.
- W22116168 hasConcept C204321447 @default.
- W22116168 hasConcept C23123220 @default.
- W22116168 hasConcept C2986744138 @default.
- W22116168 hasConcept C41008148 @default.
- W22116168 hasConcept C51632099 @default.
- W22116168 hasConcept C55439883 @default.
- W22116168 hasConcept C94124525 @default.
- W22116168 hasConcept C95623464 @default.
- W22116168 hasConceptScore W22116168C154945302 @default.
- W22116168 hasConceptScore W22116168C177264268 @default.
- W22116168 hasConceptScore W22116168C199360897 @default.
- W22116168 hasConceptScore W22116168C204321447 @default.
- W22116168 hasConceptScore W22116168C23123220 @default.
- W22116168 hasConceptScore W22116168C2986744138 @default.
- W22116168 hasConceptScore W22116168C41008148 @default.
- W22116168 hasConceptScore W22116168C51632099 @default.
- W22116168 hasConceptScore W22116168C55439883 @default.
- W22116168 hasConceptScore W22116168C94124525 @default.
- W22116168 hasConceptScore W22116168C95623464 @default.
- W22116168 hasLocation W221161681 @default.
- W22116168 hasOpenAccess W22116168 @default.
- W22116168 hasPrimaryLocation W221161681 @default.
- W22116168 hasRelatedWork W120966433 @default.
- W22116168 hasRelatedWork W1607839343 @default.
- W22116168 hasRelatedWork W2020519331 @default.
- W22116168 hasRelatedWork W2262858430 @default.
- W22116168 hasRelatedWork W2365213443 @default.
- W22116168 hasRelatedWork W2383115631 @default.
- W22116168 hasRelatedWork W3107474891 @default.
- W22116168 hasRelatedWork W31439216 @default.
- W22116168 hasRelatedWork W647665026 @default.
- W22116168 hasRelatedWork W1793353708 @default.
- W22116168 isParatext "false" @default.
- W22116168 isRetracted "false" @default.
- W22116168 magId "22116168" @default.
- W22116168 workType "article" @default.