Matches in SemOpenAlex for { <https://semopenalex.org/work/W2212776954> ?p ?o ?g. }
- W2212776954 abstract "In Human Activity Recognition (HAR) supervised and semi-supervised training are important tools for devising parametric activity models. For the best modelling performance, typically large amounts of annotated sample data are required. Annotating often represents the bottleneck in the overall modelling process as it usually involves retrospective analysis of experimental ground truth, like video footage. These approaches typically neglect that prospective users of HAR systems are themselves key sources of ground truth for their own activities. We therefore propose an Online Active Learning framework to collect user-provided annotations and to bootstrap personalized human activity models. We evaluate our framework on existing benchmark datasets and demonstrate how it outperforms standard, more naive annotation methods. Furthermore, we enact a user study where participants provide annotations using a mobile app that implements our framework. We show that Online Active Learning is a viable method to bootstrap personalized models especially in live situations without expert supervision." @default.
- W2212776954 created "2016-06-24" @default.
- W2212776954 creator A5000532612 @default.
- W2212776954 creator A5017968638 @default.
- W2212776954 creator A5018918066 @default.
- W2212776954 date "2015-10-01" @default.
- W2212776954 modified "2023-10-18" @default.
- W2212776954 title "Bootstrapping Personalised Human Activity Recognition Models Using Online Active Learning" @default.
- W2212776954 cites W1489244098 @default.
- W2212776954 cites W1493363413 @default.
- W2212776954 cites W1681944866 @default.
- W2212776954 cites W1964023646 @default.
- W2212776954 cites W1969307352 @default.
- W2212776954 cites W1987068050 @default.
- W2212776954 cites W1988412055 @default.
- W2212776954 cites W2023302299 @default.
- W2212776954 cites W2029778954 @default.
- W2212776954 cites W2031218379 @default.
- W2212776954 cites W2034015004 @default.
- W2212776954 cites W2047674303 @default.
- W2212776954 cites W2058963220 @default.
- W2212776954 cites W2063598276 @default.
- W2212776954 cites W2073401630 @default.
- W2212776954 cites W2086385378 @default.
- W2212776954 cites W2089220144 @default.
- W2212776954 cites W2093972633 @default.
- W2212776954 cites W2096071611 @default.
- W2212776954 cites W2112628161 @default.
- W2212776954 cites W2115161749 @default.
- W2212776954 cites W2117614111 @default.
- W2212776954 cites W2120081464 @default.
- W2212776954 cites W2128026023 @default.
- W2212776954 cites W2130871472 @default.
- W2212776954 cites W2133990480 @default.
- W2212776954 cites W2135090840 @default.
- W2212776954 cites W2135431605 @default.
- W2212776954 cites W2145343602 @default.
- W2212776954 cites W2145743540 @default.
- W2212776954 cites W2169173044 @default.
- W2212776954 cites W4212883601 @default.
- W2212776954 cites W4244238212 @default.
- W2212776954 cites W48781597 @default.
- W2212776954 cites W2064796573 @default.
- W2212776954 doi "https://doi.org/10.1109/cit/iucc/dasc/picom.2015.170" @default.
- W2212776954 hasPublicationYear "2015" @default.
- W2212776954 type Work @default.
- W2212776954 sameAs 2212776954 @default.
- W2212776954 citedByCount "33" @default.
- W2212776954 countsByYear W22127769542017 @default.
- W2212776954 countsByYear W22127769542018 @default.
- W2212776954 countsByYear W22127769542019 @default.
- W2212776954 countsByYear W22127769542020 @default.
- W2212776954 countsByYear W22127769542021 @default.
- W2212776954 countsByYear W22127769542022 @default.
- W2212776954 countsByYear W22127769542023 @default.
- W2212776954 crossrefType "proceedings-article" @default.
- W2212776954 hasAuthorship W2212776954A5000532612 @default.
- W2212776954 hasAuthorship W2212776954A5017968638 @default.
- W2212776954 hasAuthorship W2212776954A5018918066 @default.
- W2212776954 hasBestOaLocation W22127769542 @default.
- W2212776954 hasConcept C106159729 @default.
- W2212776954 hasConcept C111919701 @default.
- W2212776954 hasConcept C119857082 @default.
- W2212776954 hasConcept C121687571 @default.
- W2212776954 hasConcept C13280743 @default.
- W2212776954 hasConcept C144133560 @default.
- W2212776954 hasConcept C146849305 @default.
- W2212776954 hasConcept C149635348 @default.
- W2212776954 hasConcept C154945302 @default.
- W2212776954 hasConcept C162324750 @default.
- W2212776954 hasConcept C162853370 @default.
- W2212776954 hasConcept C185798385 @default.
- W2212776954 hasConcept C205649164 @default.
- W2212776954 hasConcept C207609745 @default.
- W2212776954 hasConcept C26517878 @default.
- W2212776954 hasConcept C2776321320 @default.
- W2212776954 hasConcept C2780513914 @default.
- W2212776954 hasConcept C38652104 @default.
- W2212776954 hasConcept C41008148 @default.
- W2212776954 hasConcept C77967617 @default.
- W2212776954 hasConcept C86251818 @default.
- W2212776954 hasConcept C98045186 @default.
- W2212776954 hasConceptScore W2212776954C106159729 @default.
- W2212776954 hasConceptScore W2212776954C111919701 @default.
- W2212776954 hasConceptScore W2212776954C119857082 @default.
- W2212776954 hasConceptScore W2212776954C121687571 @default.
- W2212776954 hasConceptScore W2212776954C13280743 @default.
- W2212776954 hasConceptScore W2212776954C144133560 @default.
- W2212776954 hasConceptScore W2212776954C146849305 @default.
- W2212776954 hasConceptScore W2212776954C149635348 @default.
- W2212776954 hasConceptScore W2212776954C154945302 @default.
- W2212776954 hasConceptScore W2212776954C162324750 @default.
- W2212776954 hasConceptScore W2212776954C162853370 @default.
- W2212776954 hasConceptScore W2212776954C185798385 @default.
- W2212776954 hasConceptScore W2212776954C205649164 @default.
- W2212776954 hasConceptScore W2212776954C207609745 @default.
- W2212776954 hasConceptScore W2212776954C26517878 @default.
- W2212776954 hasConceptScore W2212776954C2776321320 @default.
- W2212776954 hasConceptScore W2212776954C2780513914 @default.
- W2212776954 hasConceptScore W2212776954C38652104 @default.