Matches in SemOpenAlex for { <https://semopenalex.org/work/W2212804566> ?p ?o ?g. }
- W2212804566 endingPage "e1005717" @default.
- W2212804566 startingPage "e1005717" @default.
- W2212804566 abstract "Characterizing the distribution of effects from genome-wide genotyping data is crucial for understanding important aspects of the genetic architecture of complex traits, such as number or proportion of non-null loci, average proportion of phenotypic variance explained per non-null effect, power for discovery, and polygenic risk prediction. To this end, previous work has used effect-size models based on various distributions, including the normal and normal mixture distributions, among others. In this paper we propose a scale mixture of two normals model for effect size distributions of genome-wide association study (GWAS) test statistics. Test statistics corresponding to null associations are modeled as random draws from a normal distribution with zero mean; test statistics corresponding to non-null associations are also modeled as normal with zero mean, but with larger variance. The model is fit via minimizing discrepancies between the parametric mixture model and resampling-based nonparametric estimates of replication effect sizes and variances. We describe in detail the implications of this model for estimation of the non-null proportion, the probability of replication in de novo samples, the local false discovery rate, and power for discovery of a specified proportion of phenotypic variance explained from additive effects of loci surpassing a given significance threshold. We also examine the crucial issue of the impact of linkage disequilibrium (LD) on effect sizes and parameter estimates, both analytically and in simulations. We apply this approach to meta-analysis test statistics from two large GWAS, one for Crohn's disease (CD) and the other for schizophrenia (SZ). A scale mixture of two normals distribution provides an excellent fit to the SZ nonparametric replication effect size estimates. While capturing the general behavior of the data, this mixture model underestimates the tails of the CD effect size distribution. We discuss the implications of pervasive small but replicating effects in CD and SZ on genomic control and power. Finally, we conclude that, despite having very similar estimates of variance explained by genotyped SNPs, CD and SZ have a broadly dissimilar genetic architecture, due to differing mean effect size and proportion of non-null loci." @default.
- W2212804566 created "2016-06-24" @default.
- W2212804566 creator A5017692684 @default.
- W2212804566 creator A5018258467 @default.
- W2212804566 creator A5020215901 @default.
- W2212804566 creator A5020760956 @default.
- W2212804566 creator A5022150335 @default.
- W2212804566 creator A5031084349 @default.
- W2212804566 creator A5051228367 @default.
- W2212804566 creator A5058400315 @default.
- W2212804566 creator A5077731612 @default.
- W2212804566 creator A5087626511 @default.
- W2212804566 date "2015-12-29" @default.
- W2212804566 modified "2023-09-23" @default.
- W2212804566 title "An Empirical Bayes Mixture Model for Effect Size Distributions in Genome-Wide Association Studies" @default.
- W2212804566 cites W1510659740 @default.
- W2212804566 cites W1838763289 @default.
- W2212804566 cites W1928998639 @default.
- W2212804566 cites W1963673462 @default.
- W2212804566 cites W1980168725 @default.
- W2212804566 cites W1983539381 @default.
- W2212804566 cites W1991704577 @default.
- W2212804566 cites W2008047653 @default.
- W2212804566 cites W2009660843 @default.
- W2212804566 cites W2048011602 @default.
- W2212804566 cites W2074498980 @default.
- W2212804566 cites W2075120043 @default.
- W2212804566 cites W2091841926 @default.
- W2212804566 cites W2097656361 @default.
- W2212804566 cites W2098597355 @default.
- W2212804566 cites W2098998213 @default.
- W2212804566 cites W2101357408 @default.
- W2212804566 cites W2105381419 @default.
- W2212804566 cites W2106779017 @default.
- W2212804566 cites W2107328434 @default.
- W2212804566 cites W2113381731 @default.
- W2212804566 cites W2113594760 @default.
- W2212804566 cites W2120029762 @default.
- W2212804566 cites W2121323687 @default.
- W2212804566 cites W2133520037 @default.
- W2212804566 cites W2138069158 @default.
- W2212804566 cites W2142742009 @default.
- W2212804566 cites W2146578440 @default.
- W2212804566 cites W2153860431 @default.
- W2212804566 cites W2155496693 @default.
- W2212804566 cites W2161527093 @default.
- W2212804566 cites W2165719935 @default.
- W2212804566 cites W2188707104 @default.
- W2212804566 cites W2962931338 @default.
- W2212804566 cites W3105250094 @default.
- W2212804566 doi "https://doi.org/10.1371/journal.pgen.1005717" @default.
- W2212804566 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5456456" @default.
- W2212804566 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26714184" @default.
- W2212804566 hasPublicationYear "2015" @default.
- W2212804566 type Work @default.
- W2212804566 sameAs 2212804566 @default.
- W2212804566 citedByCount "19" @default.
- W2212804566 countsByYear W22128045662016 @default.
- W2212804566 countsByYear W22128045662017 @default.
- W2212804566 countsByYear W22128045662018 @default.
- W2212804566 countsByYear W22128045662019 @default.
- W2212804566 countsByYear W22128045662020 @default.
- W2212804566 countsByYear W22128045662022 @default.
- W2212804566 countsByYear W22128045662023 @default.
- W2212804566 crossrefType "journal-article" @default.
- W2212804566 hasAuthorship W2212804566A5017692684 @default.
- W2212804566 hasAuthorship W2212804566A5018258467 @default.
- W2212804566 hasAuthorship W2212804566A5020215901 @default.
- W2212804566 hasAuthorship W2212804566A5020760956 @default.
- W2212804566 hasAuthorship W2212804566A5022150335 @default.
- W2212804566 hasAuthorship W2212804566A5031084349 @default.
- W2212804566 hasAuthorship W2212804566A5051228367 @default.
- W2212804566 hasAuthorship W2212804566A5058400315 @default.
- W2212804566 hasAuthorship W2212804566A5077731612 @default.
- W2212804566 hasAuthorship W2212804566A5087626511 @default.
- W2212804566 hasBestOaLocation W22128045661 @default.
- W2212804566 hasConcept C102366305 @default.
- W2212804566 hasConcept C104317684 @default.
- W2212804566 hasConcept C105795698 @default.
- W2212804566 hasConcept C106208931 @default.
- W2212804566 hasConcept C107673813 @default.
- W2212804566 hasConcept C117251300 @default.
- W2212804566 hasConcept C12590798 @default.
- W2212804566 hasConcept C129848803 @default.
- W2212804566 hasConcept C135763542 @default.
- W2212804566 hasConcept C153209595 @default.
- W2212804566 hasConcept C180754005 @default.
- W2212804566 hasConcept C18903297 @default.
- W2212804566 hasConcept C191988596 @default.
- W2212804566 hasConcept C197754878 @default.
- W2212804566 hasConcept C207201462 @default.
- W2212804566 hasConcept C33923547 @default.
- W2212804566 hasConcept C35605836 @default.
- W2212804566 hasConcept C36382193 @default.
- W2212804566 hasConcept C54355233 @default.
- W2212804566 hasConcept C61224824 @default.
- W2212804566 hasConcept C86803240 @default.
- W2212804566 hasConcept C87007009 @default.