Matches in SemOpenAlex for { <https://semopenalex.org/work/W2213331706> ?p ?o ?g. }
- W2213331706 endingPage "293" @default.
- W2213331706 startingPage "283" @default.
- W2213331706 abstract "A series of experiments were performed to investigate the relationship between syngas composition (H2/CO/CO2/N2/O2) and NO formation. Laser-saturated fluorescence measurements of NO in a premixed syngas flat flame from a heat flux burner were recorded for various fuel compositions, dilution ratios and equivalence ratios. Quantitative measurements were compared with the predictions from CHEMKIN software using four different chemical mechanisms, i.e., GRI mech 3.0, Chemical Reaction Engineering and Chemical Kinetics 1407, GDF-Kin 3.0, and the Mendiara and Glarborg mechanism; each mechanism included reaction subsets for NOx formation. These models were validated against a CH4 flame; the GDF-Kin 3.0 mechanism produced the best agreement with measurements. NO measurements for CO/H2 syngas fuel with 50% CO2 dilution at various equivalence ratios found the maximum NO production near stoichiometry. The majority of NO produced for these conditions is predicted to come from the combination of the NNH and N2O pathways. Investigation of NO production during combustion of different CO/H2 ratio syngas diluted with 60% N2 showed that increasing the H2 fraction decreased the total NO concentration. However, normalizing the NO production rate by the fuel mass consumption rate showed H2 produces more NO per gram of fuel consumed. Predictions of temperature and NO rate of production along the flame axis showed that the syngas with high H2 content had a flame front closer to the burner exit and NO production rate greater than the high CO case. Dilution of CO/H2 syngas fuel with N2 and CO2 showed that CO2 has a stronger reduction in NO emission than N2. GDF-Kin 3.0 predicted that dilution with CO2 caused a greater reduction in flame temperature than the same volume of N2. Predicted NO rate of production and reaction sensitivity analysis predicted that the Zel’dovich pathway was dominant for undiluted syngas. However, as the flame temperature reduced, the Zel’dovich pathway was inhibited to a greater extent than the N2O and NNH pathways so that, at high dilution, NO production was driven by the N2O and NNH pathways." @default.
- W2213331706 created "2016-06-24" @default.
- W2213331706 creator A5003960148 @default.
- W2213331706 creator A5024076883 @default.
- W2213331706 creator A5046913049 @default.
- W2213331706 creator A5051768328 @default.
- W2213331706 creator A5071409252 @default.
- W2213331706 creator A5078838888 @default.
- W2213331706 date "2016-02-01" @default.
- W2213331706 modified "2023-10-11" @default.
- W2213331706 title "Investigation of NO formation in premixed adiabatic laminar flames of H2/CO syngas and air by saturated laser-induced fluorescence and kinetic modeling" @default.
- W2213331706 cites W1918750314 @default.
- W2213331706 cites W1969493292 @default.
- W2213331706 cites W1970824564 @default.
- W2213331706 cites W1971675217 @default.
- W2213331706 cites W1976273354 @default.
- W2213331706 cites W1976502305 @default.
- W2213331706 cites W1978784824 @default.
- W2213331706 cites W1982381017 @default.
- W2213331706 cites W1983124047 @default.
- W2213331706 cites W1985635527 @default.
- W2213331706 cites W1988307159 @default.
- W2213331706 cites W1988644272 @default.
- W2213331706 cites W2000001460 @default.
- W2213331706 cites W2003982066 @default.
- W2213331706 cites W2005891968 @default.
- W2213331706 cites W2006523452 @default.
- W2213331706 cites W2010939789 @default.
- W2213331706 cites W2015666620 @default.
- W2213331706 cites W2019758464 @default.
- W2213331706 cites W2022926472 @default.
- W2213331706 cites W2023308429 @default.
- W2213331706 cites W2026708443 @default.
- W2213331706 cites W2026883144 @default.
- W2213331706 cites W2030293823 @default.
- W2213331706 cites W2033678090 @default.
- W2213331706 cites W2039044451 @default.
- W2213331706 cites W2039407279 @default.
- W2213331706 cites W2043259942 @default.
- W2213331706 cites W2050689557 @default.
- W2213331706 cites W2051251123 @default.
- W2213331706 cites W2054125789 @default.
- W2213331706 cites W2069384426 @default.
- W2213331706 cites W2071435352 @default.
- W2213331706 cites W2074625634 @default.
- W2213331706 cites W2075548106 @default.
- W2213331706 cites W2082416872 @default.
- W2213331706 cites W2090949644 @default.
- W2213331706 cites W2094341413 @default.
- W2213331706 cites W2095445187 @default.
- W2213331706 cites W2123132721 @default.
- W2213331706 cites W2152371438 @default.
- W2213331706 cites W2164132588 @default.
- W2213331706 cites W2164399811 @default.
- W2213331706 cites W2319983140 @default.
- W2213331706 cites W2323282470 @default.
- W2213331706 cites W4240808154 @default.
- W2213331706 doi "https://doi.org/10.1016/j.combustflame.2015.11.027" @default.
- W2213331706 hasPublicationYear "2016" @default.
- W2213331706 type Work @default.
- W2213331706 sameAs 2213331706 @default.
- W2213331706 citedByCount "26" @default.
- W2213331706 countsByYear W22133317062016 @default.
- W2213331706 countsByYear W22133317062017 @default.
- W2213331706 countsByYear W22133317062018 @default.
- W2213331706 countsByYear W22133317062019 @default.
- W2213331706 countsByYear W22133317062020 @default.
- W2213331706 countsByYear W22133317062021 @default.
- W2213331706 countsByYear W22133317062022 @default.
- W2213331706 countsByYear W22133317062023 @default.
- W2213331706 crossrefType "journal-article" @default.
- W2213331706 hasAuthorship W2213331706A5003960148 @default.
- W2213331706 hasAuthorship W2213331706A5024076883 @default.
- W2213331706 hasAuthorship W2213331706A5046913049 @default.
- W2213331706 hasAuthorship W2213331706A5051768328 @default.
- W2213331706 hasAuthorship W2213331706A5071409252 @default.
- W2213331706 hasAuthorship W2213331706A5078838888 @default.
- W2213331706 hasConcept C105923489 @default.
- W2213331706 hasConcept C113196181 @default.
- W2213331706 hasConcept C115957382 @default.
- W2213331706 hasConcept C121332964 @default.
- W2213331706 hasConcept C129474609 @default.
- W2213331706 hasConcept C130007353 @default.
- W2213331706 hasConcept C144082473 @default.
- W2213331706 hasConcept C178790620 @default.
- W2213331706 hasConcept C185592680 @default.
- W2213331706 hasConcept C194439259 @default.
- W2213331706 hasConcept C202189072 @default.
- W2213331706 hasConcept C2776547972 @default.
- W2213331706 hasConcept C43535742 @default.
- W2213331706 hasConcept C512968161 @default.
- W2213331706 hasConcept C516920438 @default.
- W2213331706 hasConcept C83104080 @default.
- W2213331706 hasConcept C96618451 @default.
- W2213331706 hasConcept C97355855 @default.
- W2213331706 hasConceptScore W2213331706C105923489 @default.
- W2213331706 hasConceptScore W2213331706C113196181 @default.
- W2213331706 hasConceptScore W2213331706C115957382 @default.