Matches in SemOpenAlex for { <https://semopenalex.org/work/W2213588566> ?p ?o ?g. }
- W2213588566 endingPage "194" @default.
- W2213588566 startingPage "186" @default.
- W2213588566 abstract "Detailed kinetic reaction mechanisms are necessary for accurate prediction of combustion characteristics such as ignition and emissions in realistic engines. However, the calculation of chemically reacting flows with detailed chemistry is computational expensive due to the large number of species and reactions involved. In this study, a combined approach of dynamic adaptive chemistry (DAC) and in situ adaptive tabulation (ISAT) for efficient chemistry calculations has been implemented into a three-dimensional flow solver to simulate a homogenous charged compression ignition (HCCI) engine with a primary reference fuel (PRF). In the combined method, ISAT speeds up the chemistry calculation by reducing the number of integrations of ordinary differential equations (ODEs) governing chemical kinetics through tabulating and re-using the ODE solutions. At the meantime, DAC accelerates the necessary ODE integrations via the use of locally valid reduced mechanisms, which are obtained using the direct relation graph (DRG) method. The study shows that ISAT–DAC can achieve a speedup factor of about three with accurate prediction of composition and heat release even for the pressure-varying transient engine simulation with significant composition inhomogeneity resulting from wall heat loss. A detailed analysis reveals that the combined method effectively reduces the computational cost through taking advantage of the respective acceleration characteristics of DAC and ISAT at different combustion stages. In the low temperature combustion stage between about 650 K and 1000 K, even though the reduction in the mechanism size and consequently the ODE integration of the chemical kinetics by DAC is not significant, the combined method can still reach a speed-up factor of more than 100 due to the fact that the tabulated entries can effectively be reused. For the high temperature region, even though the tabulated entries cannot be reused due to the rapid change of the pressure and large composition inhomogeneity resulting from the active combustion and heat loss, DAC can effectively reduce the size of the needed ODE integrations by freezing a significant number of unimportant species and reactions. The study further quantifies the effect of composition inhomogeneity on the computation efficiency in detailed chemistry calculations in realistic engine simulations. For the case considered, the temperature inhomogeneity due to the wall heat loss obviously increases at around top dead center (TDC), reaching a level of 350 K difference in temperature within the combustion chamber. Consequently, the overall computational efficiency in chemistry calculation by the combined method has been reduced by 40% compared to the case without heat loss." @default.
- W2213588566 created "2016-06-24" @default.
- W2213588566 creator A5023261675 @default.
- W2213588566 creator A5038776919 @default.
- W2213588566 date "2016-05-01" @default.
- W2213588566 modified "2023-10-18" @default.
- W2213588566 title "Chemistry acceleration with tabulated dynamic adaptive chemistry in a realistic engine with a primary reference fuel" @default.
- W2213588566 cites W1971242811 @default.
- W2213588566 cites W1987117213 @default.
- W2213588566 cites W1987265711 @default.
- W2213588566 cites W1989220496 @default.
- W2213588566 cites W1997749625 @default.
- W2213588566 cites W1999010882 @default.
- W2213588566 cites W2007006423 @default.
- W2213588566 cites W2016164403 @default.
- W2213588566 cites W2019259558 @default.
- W2213588566 cites W2020534756 @default.
- W2213588566 cites W2020884224 @default.
- W2213588566 cites W2021117057 @default.
- W2213588566 cites W2022019863 @default.
- W2213588566 cites W2024754002 @default.
- W2213588566 cites W2027728436 @default.
- W2213588566 cites W2034578785 @default.
- W2213588566 cites W2043309686 @default.
- W2213588566 cites W2048213309 @default.
- W2213588566 cites W2048384680 @default.
- W2213588566 cites W2050390104 @default.
- W2213588566 cites W2052495929 @default.
- W2213588566 cites W2058612903 @default.
- W2213588566 cites W2065804960 @default.
- W2213588566 cites W2082519506 @default.
- W2213588566 cites W2083830987 @default.
- W2213588566 cites W2088989631 @default.
- W2213588566 cites W2089609719 @default.
- W2213588566 cites W2091566725 @default.
- W2213588566 cites W2121092916 @default.
- W2213588566 cites W2223426298 @default.
- W2213588566 cites W2324685442 @default.
- W2213588566 cites W2324986918 @default.
- W2213588566 cites W2568116222 @default.
- W2213588566 cites W280615693 @default.
- W2213588566 doi "https://doi.org/10.1016/j.fuel.2015.12.055" @default.
- W2213588566 hasPublicationYear "2016" @default.
- W2213588566 type Work @default.
- W2213588566 sameAs 2213588566 @default.
- W2213588566 citedByCount "11" @default.
- W2213588566 countsByYear W22135885662017 @default.
- W2213588566 countsByYear W22135885662018 @default.
- W2213588566 countsByYear W22135885662020 @default.
- W2213588566 countsByYear W22135885662021 @default.
- W2213588566 countsByYear W22135885662022 @default.
- W2213588566 countsByYear W22135885662023 @default.
- W2213588566 crossrefType "journal-article" @default.
- W2213588566 hasAuthorship W2213588566A5023261675 @default.
- W2213588566 hasAuthorship W2213588566A5038776919 @default.
- W2213588566 hasConcept C105923489 @default.
- W2213588566 hasConcept C106169591 @default.
- W2213588566 hasConcept C111919701 @default.
- W2213588566 hasConcept C117896860 @default.
- W2213588566 hasConcept C121332964 @default.
- W2213588566 hasConcept C147789679 @default.
- W2213588566 hasConcept C159063594 @default.
- W2213588566 hasConcept C185592680 @default.
- W2213588566 hasConcept C199360897 @default.
- W2213588566 hasConcept C2778770139 @default.
- W2213588566 hasConcept C28826006 @default.
- W2213588566 hasConcept C33923547 @default.
- W2213588566 hasConcept C34862557 @default.
- W2213588566 hasConcept C41008148 @default.
- W2213588566 hasConcept C51544822 @default.
- W2213588566 hasConcept C62520636 @default.
- W2213588566 hasConcept C68339613 @default.
- W2213588566 hasConcept C74650414 @default.
- W2213588566 hasConcept C78045399 @default.
- W2213588566 hasConcept C96532641 @default.
- W2213588566 hasConcept C96949565 @default.
- W2213588566 hasConcept C97355855 @default.
- W2213588566 hasConceptScore W2213588566C105923489 @default.
- W2213588566 hasConceptScore W2213588566C106169591 @default.
- W2213588566 hasConceptScore W2213588566C111919701 @default.
- W2213588566 hasConceptScore W2213588566C117896860 @default.
- W2213588566 hasConceptScore W2213588566C121332964 @default.
- W2213588566 hasConceptScore W2213588566C147789679 @default.
- W2213588566 hasConceptScore W2213588566C159063594 @default.
- W2213588566 hasConceptScore W2213588566C185592680 @default.
- W2213588566 hasConceptScore W2213588566C199360897 @default.
- W2213588566 hasConceptScore W2213588566C2778770139 @default.
- W2213588566 hasConceptScore W2213588566C28826006 @default.
- W2213588566 hasConceptScore W2213588566C33923547 @default.
- W2213588566 hasConceptScore W2213588566C34862557 @default.
- W2213588566 hasConceptScore W2213588566C41008148 @default.
- W2213588566 hasConceptScore W2213588566C51544822 @default.
- W2213588566 hasConceptScore W2213588566C62520636 @default.
- W2213588566 hasConceptScore W2213588566C68339613 @default.
- W2213588566 hasConceptScore W2213588566C74650414 @default.
- W2213588566 hasConceptScore W2213588566C78045399 @default.
- W2213588566 hasConceptScore W2213588566C96532641 @default.
- W2213588566 hasConceptScore W2213588566C96949565 @default.