Matches in SemOpenAlex for { <https://semopenalex.org/work/W2213662364> ?p ?o ?g. }
- W2213662364 endingPage "156" @default.
- W2213662364 startingPage "137" @default.
- W2213662364 abstract "Due to globalization, the characteristic of many systems in biology, engineering and sociology paradigms can nowadays be captured and investigated as networks of connected communities. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem that recently enjoyed a considerable interest. Among the proposed methods, the field of multi-objective evolutionary algorithms (MOEAs) reveals outperformed results. Despite the existing efforts on designing effective multi-objective optimization (MOO) models and investigating the performance of several MOEAs for detecting natural community structures, their techniques lack the introduction of some problem-specific heuristic operators that realize their principles from the natural structure of communities. Moreover, most of these MOEAs evaluate and compare their performance under different algorithmic settings that may hold unmerited conclusions. The main contribution of this paper is two-fold. Firstly, to reformulate the community detection problem as a MOO model that can simultaneously capture the intra- and inter-community structures. Secondly, to propose a heuristic perturbation operator that can emphasize the search for such intra- and inter-community connections in an attempt to offer a positive collaboration with the MOO model. One of the prominent multi-objective evolutionary algorithms (the so-called MOEA/D) is adopted with the proposed community detection model and the perturbation operator to identify the overlapped community sets in complex networks. Under the same MOEA/D characteristic settings, the performance of the proposed model and test results are evaluated against three state-of-the-art MOO models. The experiments on real-world and synthetic social networks of different complexities demonstrate the effectiveness of the proposed model to define community detection problem. Moreover, the results prove the positive impact of the proposed heuristic operator to harness the strength of all MOO models in both terms of convergence velocity and convergence reliability." @default.
- W2213662364 created "2016-06-24" @default.
- W2213662364 creator A5024519059 @default.
- W2213662364 creator A5034657520 @default.
- W2213662364 creator A5055436168 @default.
- W2213662364 date "2016-02-01" @default.
- W2213662364 modified "2023-10-01" @default.
- W2213662364 title "Improving the performance of evolutionary multi-objective co-clustering models for community detection in complex social networks" @default.
- W2213662364 cites W143174683 @default.
- W2213662364 cites W1491635691 @default.
- W2213662364 cites W1497990247 @default.
- W2213662364 cites W16060472 @default.
- W2213662364 cites W163172815 @default.
- W2213662364 cites W1971421925 @default.
- W2213662364 cites W1971844861 @default.
- W2213662364 cites W1991732712 @default.
- W2213662364 cites W2003672460 @default.
- W2213662364 cites W2015953751 @default.
- W2213662364 cites W2020504153 @default.
- W2213662364 cites W2023655578 @default.
- W2213662364 cites W2030794512 @default.
- W2213662364 cites W2033590892 @default.
- W2213662364 cites W2038920443 @default.
- W2213662364 cites W2047940964 @default.
- W2213662364 cites W2054902478 @default.
- W2213662364 cites W2089458547 @default.
- W2213662364 cites W2097464974 @default.
- W2213662364 cites W2109726592 @default.
- W2213662364 cites W2116661285 @default.
- W2213662364 cites W2118608338 @default.
- W2213662364 cites W2131681506 @default.
- W2213662364 cites W2143381319 @default.
- W2213662364 cites W2146815027 @default.
- W2213662364 cites W2151936673 @default.
- W2213662364 cites W2171552940 @default.
- W2213662364 cites W27394026 @default.
- W2213662364 cites W3100069540 @default.
- W2213662364 cites W3101413764 @default.
- W2213662364 cites W3102191718 @default.
- W2213662364 cites W3102230274 @default.
- W2213662364 doi "https://doi.org/10.1016/j.swevo.2015.09.003" @default.
- W2213662364 hasPublicationYear "2016" @default.
- W2213662364 type Work @default.
- W2213662364 sameAs 2213662364 @default.
- W2213662364 citedByCount "27" @default.
- W2213662364 countsByYear W22136623642016 @default.
- W2213662364 countsByYear W22136623642017 @default.
- W2213662364 countsByYear W22136623642018 @default.
- W2213662364 countsByYear W22136623642019 @default.
- W2213662364 countsByYear W22136623642020 @default.
- W2213662364 countsByYear W22136623642021 @default.
- W2213662364 countsByYear W22136623642023 @default.
- W2213662364 crossrefType "journal-article" @default.
- W2213662364 hasAuthorship W2213662364A5024519059 @default.
- W2213662364 hasAuthorship W2213662364A5034657520 @default.
- W2213662364 hasAuthorship W2213662364A5055436168 @default.
- W2213662364 hasConcept C104317684 @default.
- W2213662364 hasConcept C114614502 @default.
- W2213662364 hasConcept C119857082 @default.
- W2213662364 hasConcept C121332964 @default.
- W2213662364 hasConcept C126255220 @default.
- W2213662364 hasConcept C133079900 @default.
- W2213662364 hasConcept C136764020 @default.
- W2213662364 hasConcept C154945302 @default.
- W2213662364 hasConcept C158448853 @default.
- W2213662364 hasConcept C159149176 @default.
- W2213662364 hasConcept C17020691 @default.
- W2213662364 hasConcept C173801870 @default.
- W2213662364 hasConcept C177918212 @default.
- W2213662364 hasConcept C185592680 @default.
- W2213662364 hasConcept C202444582 @default.
- W2213662364 hasConcept C33923547 @default.
- W2213662364 hasConcept C34947359 @default.
- W2213662364 hasConcept C41008148 @default.
- W2213662364 hasConcept C55493867 @default.
- W2213662364 hasConcept C62520636 @default.
- W2213662364 hasConcept C73555534 @default.
- W2213662364 hasConcept C86339819 @default.
- W2213662364 hasConcept C9652623 @default.
- W2213662364 hasConceptScore W2213662364C104317684 @default.
- W2213662364 hasConceptScore W2213662364C114614502 @default.
- W2213662364 hasConceptScore W2213662364C119857082 @default.
- W2213662364 hasConceptScore W2213662364C121332964 @default.
- W2213662364 hasConceptScore W2213662364C126255220 @default.
- W2213662364 hasConceptScore W2213662364C133079900 @default.
- W2213662364 hasConceptScore W2213662364C136764020 @default.
- W2213662364 hasConceptScore W2213662364C154945302 @default.
- W2213662364 hasConceptScore W2213662364C158448853 @default.
- W2213662364 hasConceptScore W2213662364C159149176 @default.
- W2213662364 hasConceptScore W2213662364C17020691 @default.
- W2213662364 hasConceptScore W2213662364C173801870 @default.
- W2213662364 hasConceptScore W2213662364C177918212 @default.
- W2213662364 hasConceptScore W2213662364C185592680 @default.
- W2213662364 hasConceptScore W2213662364C202444582 @default.
- W2213662364 hasConceptScore W2213662364C33923547 @default.
- W2213662364 hasConceptScore W2213662364C34947359 @default.
- W2213662364 hasConceptScore W2213662364C41008148 @default.
- W2213662364 hasConceptScore W2213662364C55493867 @default.