Matches in SemOpenAlex for { <https://semopenalex.org/work/W2213889719> ?p ?o ?g. }
- W2213889719 abstract "We extend the continuum theory of random intermittent search processes to the case of N independent searchers looking to deliver cargo to a single hidden target located somewhere on a semi-infinite track. Each searcher randomly switches between a stationary state and either a leftward or rightward constant velocity state. We assume that all of the particles start at one end of the track and realize sample trajectories independently generated from the same underlying stochastic process. The hidden target is treated as a partially absorbing trap in which a particle can only detect the target and deliver its cargo if it is stationary and within range of the target; the particle is removed from the system after delivering its cargo. As a further generalization of previous models, we assume that up to n successive particles can find the target and deliver its cargo. Assuming that the rate of target detection scales as 1/N, we show that there exists a well-defined mean-field limit N→∞, in which the stochastic model reduces to a deterministic system of linear reaction-hyperbolic equations for the concentrations of particles in each of the internal states. These equations decouple from the stochastic process associated with filling the target with cargo. The latter can be modeled as a Poisson process in which the time-dependent rate of filling λ(t) depends on the concentration of stationary particles within the target domain. Hence, we refer to the target as a Poisson trap. We analyze the efficiency of filling the Poisson trap with n particles in terms of the waiting time density f(n)(t). The latter is determined by the integrated Poisson rate μ(t)=∫(0)(t)λ(s)ds, which in turn depends on the solution to the reaction-hyperbolic equations. We obtain an approximate solution for the particle concentrations by reducing the system of reaction-hyperbolic equations to a scalar advection-diffusion equation using a quasisteady-state analysis. We compare our analytical results for the mean-field model with Monte Carlo simulations for finite N. We thus determine how the mean first passage time (MFPT) for filling the target depends on N and n." @default.
- W2213889719 created "2016-06-24" @default.
- W2213889719 creator A5013056878 @default.
- W2213889719 creator A5027313402 @default.
- W2213889719 date "2012-03-09" @default.
- W2213889719 modified "2023-10-04" @default.
- W2213889719 title "Filling of a Poisson trap by a population of random intermittent searchers" @default.
- W2213889719 cites W1484033701 @default.
- W2213889719 cites W1519469540 @default.
- W2213889719 cites W1522475122 @default.
- W2213889719 cites W1558450967 @default.
- W2213889719 cites W1592313435 @default.
- W2213889719 cites W1816275442 @default.
- W2213889719 cites W1965584832 @default.
- W2213889719 cites W1967911774 @default.
- W2213889719 cites W1968921863 @default.
- W2213889719 cites W1991431080 @default.
- W2213889719 cites W1994660545 @default.
- W2213889719 cites W1996326412 @default.
- W2213889719 cites W1997719189 @default.
- W2213889719 cites W2003070167 @default.
- W2213889719 cites W2013012370 @default.
- W2213889719 cites W2021716683 @default.
- W2213889719 cites W2033159578 @default.
- W2213889719 cites W2040456801 @default.
- W2213889719 cites W2040675064 @default.
- W2213889719 cites W2042942115 @default.
- W2213889719 cites W2054017432 @default.
- W2213889719 cites W2069916404 @default.
- W2213889719 cites W2072187027 @default.
- W2213889719 cites W2078056153 @default.
- W2213889719 cites W2081488852 @default.
- W2213889719 cites W2085365590 @default.
- W2213889719 cites W2087211196 @default.
- W2213889719 cites W2097136760 @default.
- W2213889719 cites W2101478079 @default.
- W2213889719 cites W2102267113 @default.
- W2213889719 cites W2121241862 @default.
- W2213889719 cites W2124735489 @default.
- W2213889719 cites W2162614396 @default.
- W2213889719 cites W2167435082 @default.
- W2213889719 cites W2168208027 @default.
- W2213889719 cites W2964101820 @default.
- W2213889719 cites W3100801320 @default.
- W2213889719 doi "https://doi.org/10.1103/physreve.85.031909" @default.
- W2213889719 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22587125" @default.
- W2213889719 hasPublicationYear "2012" @default.
- W2213889719 type Work @default.
- W2213889719 sameAs 2213889719 @default.
- W2213889719 citedByCount "6" @default.
- W2213889719 countsByYear W22138897192012 @default.
- W2213889719 countsByYear W22138897192013 @default.
- W2213889719 countsByYear W22138897192014 @default.
- W2213889719 countsByYear W22138897192015 @default.
- W2213889719 countsByYear W22138897192016 @default.
- W2213889719 crossrefType "journal-article" @default.
- W2213889719 hasAuthorship W2213889719A5013056878 @default.
- W2213889719 hasAuthorship W2213889719A5027313402 @default.
- W2213889719 hasBestOaLocation W22138897191 @default.
- W2213889719 hasConcept C100906024 @default.
- W2213889719 hasConcept C105795698 @default.
- W2213889719 hasConcept C121099081 @default.
- W2213889719 hasConcept C121332964 @default.
- W2213889719 hasConcept C121864883 @default.
- W2213889719 hasConcept C134306372 @default.
- W2213889719 hasConcept C144024400 @default.
- W2213889719 hasConcept C149923435 @default.
- W2213889719 hasConcept C151201525 @default.
- W2213889719 hasConcept C153294291 @default.
- W2213889719 hasConcept C159985019 @default.
- W2213889719 hasConcept C177148314 @default.
- W2213889719 hasConcept C192562407 @default.
- W2213889719 hasConcept C199360897 @default.
- W2213889719 hasConcept C204323151 @default.
- W2213889719 hasConcept C2777027219 @default.
- W2213889719 hasConcept C2908647359 @default.
- W2213889719 hasConcept C33923547 @default.
- W2213889719 hasConcept C41008148 @default.
- W2213889719 hasConcept C8272713 @default.
- W2213889719 hasConceptScore W2213889719C100906024 @default.
- W2213889719 hasConceptScore W2213889719C105795698 @default.
- W2213889719 hasConceptScore W2213889719C121099081 @default.
- W2213889719 hasConceptScore W2213889719C121332964 @default.
- W2213889719 hasConceptScore W2213889719C121864883 @default.
- W2213889719 hasConceptScore W2213889719C134306372 @default.
- W2213889719 hasConceptScore W2213889719C144024400 @default.
- W2213889719 hasConceptScore W2213889719C149923435 @default.
- W2213889719 hasConceptScore W2213889719C151201525 @default.
- W2213889719 hasConceptScore W2213889719C153294291 @default.
- W2213889719 hasConceptScore W2213889719C159985019 @default.
- W2213889719 hasConceptScore W2213889719C177148314 @default.
- W2213889719 hasConceptScore W2213889719C192562407 @default.
- W2213889719 hasConceptScore W2213889719C199360897 @default.
- W2213889719 hasConceptScore W2213889719C204323151 @default.
- W2213889719 hasConceptScore W2213889719C2777027219 @default.
- W2213889719 hasConceptScore W2213889719C2908647359 @default.
- W2213889719 hasConceptScore W2213889719C33923547 @default.
- W2213889719 hasConceptScore W2213889719C41008148 @default.
- W2213889719 hasConceptScore W2213889719C8272713 @default.
- W2213889719 hasFunder F4320306076 @default.