Matches in SemOpenAlex for { <https://semopenalex.org/work/W2214291224> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2214291224 abstract "Typically only the copolar channels of weather radar data is used for extracting various parameters or observables. ZDR, kDP and PhiDP for example are prominent extracts from Zxx and Zyy and have quite a lot of applications in the field of precipitation measurements. Nevertheless, the use of the full polarimetric coherent scattering matrix to extract physical properties according to the scattering process has only poorly been addressed, particularly due to high costs in establishing such complicated systems being able to coherently measure co- and crosspolar scattering amplitudes and phases. However, DLRs POLDIRAD is such a fully polarimetric weather radar operating in C-band, able to acquire time series (raw) data, containing all the information needed to apply polarimetric decomposition techniques in order to extract physical information about the illuminated scatterers from the observed scattering process.This paper presents a study about the possibilities of applying coherent polarimetric techniques to time series (raw) data, and the aim is to evaluate an understanding of the potential of such techniques with regard to weather radar data. It will concentrate on the Entropy-Alpha decomposition, based on Pauli-matrices, because the physical interpretation is pretty much straight forward and easy to understand and therefore a good point to start from. This decomposition has originally been developed for application to Synthetic Aperture Radar (SAR) data, and hence all the advances in this technique concentrate on targets on the earth's surface rather than meteorological targets as raindrops, snow or hail.The first step is to prepare the data, i.e. changes in phase due to propagation through the medium have to be corrected as well as phase shifts due to Doppler effects. The second step involves calculating the Covariance (or Coherence) matrix from the scattering matrix time series per range bin. Therefrom this matrix contains the statistical fluctuations of targets over time. By diagonalysing the hermitian Covariance matrix in the third step it is possible to extract the dominant physical scattering mechanisms. The observables Entropy and Alpha-angle are quite simple measures, which help to interpret the results. The forth step consists of choosing areas in the Entropy-Alpha plane in order to classify the data. Refinement of this classification using the first Eigenvalue (intensity) might be necessary and thus investigated as well.The results will show that it is clearly possible to distinguish between different types of scattering, and moreover that there is sufficient variation in scattering types to be able to apply a reasonable classification. It is not only possible to differentiate meteorological targets, but also to detect ground clutter or areas with high noise levels, which simplifies the process of pre-classifying weather radar data. Furthermore the results will be compared to traditional classification methods in order to analyse, if this new method provides additional, complementary or maybe even completely new information or relations." @default.
- W2214291224 created "2016-06-24" @default.
- W2214291224 creator A5019638248 @default.
- W2214291224 creator A5035660039 @default.
- W2214291224 creator A5066058014 @default.
- W2214291224 date "2005-10-27" @default.
- W2214291224 modified "2023-09-24" @default.
- W2214291224 title "A first approach to unsupervised Entropy-Alpha-classification of full-polarimetric weather-radar data" @default.
- W2214291224 hasPublicationYear "2005" @default.
- W2214291224 type Work @default.
- W2214291224 sameAs 2214291224 @default.
- W2214291224 citedByCount "1" @default.
- W2214291224 countsByYear W22142912242015 @default.
- W2214291224 crossrefType "journal-article" @default.
- W2214291224 hasAuthorship W2214291224A5019638248 @default.
- W2214291224 hasAuthorship W2214291224A5035660039 @default.
- W2214291224 hasAuthorship W2214291224A5066058014 @default.
- W2214291224 hasConcept C106301342 @default.
- W2214291224 hasConcept C120665830 @default.
- W2214291224 hasConcept C121332964 @default.
- W2214291224 hasConcept C127313418 @default.
- W2214291224 hasConcept C153294291 @default.
- W2214291224 hasConcept C191486275 @default.
- W2214291224 hasConcept C205649164 @default.
- W2214291224 hasConcept C2776212561 @default.
- W2214291224 hasConcept C28493345 @default.
- W2214291224 hasConcept C41008148 @default.
- W2214291224 hasConcept C554190296 @default.
- W2214291224 hasConcept C62520636 @default.
- W2214291224 hasConcept C62649853 @default.
- W2214291224 hasConcept C76155785 @default.
- W2214291224 hasConcept C87360688 @default.
- W2214291224 hasConceptScore W2214291224C106301342 @default.
- W2214291224 hasConceptScore W2214291224C120665830 @default.
- W2214291224 hasConceptScore W2214291224C121332964 @default.
- W2214291224 hasConceptScore W2214291224C127313418 @default.
- W2214291224 hasConceptScore W2214291224C153294291 @default.
- W2214291224 hasConceptScore W2214291224C191486275 @default.
- W2214291224 hasConceptScore W2214291224C205649164 @default.
- W2214291224 hasConceptScore W2214291224C2776212561 @default.
- W2214291224 hasConceptScore W2214291224C28493345 @default.
- W2214291224 hasConceptScore W2214291224C41008148 @default.
- W2214291224 hasConceptScore W2214291224C554190296 @default.
- W2214291224 hasConceptScore W2214291224C62520636 @default.
- W2214291224 hasConceptScore W2214291224C62649853 @default.
- W2214291224 hasConceptScore W2214291224C76155785 @default.
- W2214291224 hasConceptScore W2214291224C87360688 @default.
- W2214291224 hasLocation W22142912241 @default.
- W2214291224 hasOpenAccess W2214291224 @default.
- W2214291224 hasPrimaryLocation W22142912241 @default.
- W2214291224 hasRelatedWork W1512899524 @default.
- W2214291224 hasRelatedWork W1606885489 @default.
- W2214291224 hasRelatedWork W1622633376 @default.
- W2214291224 hasRelatedWork W1644747848 @default.
- W2214291224 hasRelatedWork W2100298061 @default.
- W2214291224 hasRelatedWork W2107379745 @default.
- W2214291224 hasRelatedWork W2107767668 @default.
- W2214291224 hasRelatedWork W2113446593 @default.
- W2214291224 hasRelatedWork W2133161181 @default.
- W2214291224 hasRelatedWork W2150086999 @default.
- W2214291224 hasRelatedWork W2150212171 @default.
- W2214291224 hasRelatedWork W2155473288 @default.
- W2214291224 hasRelatedWork W2157811011 @default.
- W2214291224 hasRelatedWork W2214392114 @default.
- W2214291224 hasRelatedWork W225593023 @default.
- W2214291224 hasRelatedWork W2413302291 @default.
- W2214291224 hasRelatedWork W2800859061 @default.
- W2214291224 hasRelatedWork W2901213167 @default.
- W2214291224 hasRelatedWork W186572946 @default.
- W2214291224 hasRelatedWork W2150731971 @default.
- W2214291224 isParatext "false" @default.
- W2214291224 isRetracted "false" @default.
- W2214291224 magId "2214291224" @default.
- W2214291224 workType "article" @default.