Matches in SemOpenAlex for { <https://semopenalex.org/work/W2214709573> ?p ?o ?g. }
- W2214709573 abstract "Scaling down to nanometer size fluidic conduits has opened a new window into the world of sensing and manipulation of nanoscale species. Thousands of publications and hundreds of patents in this field are only a starting point for exploring and manipulating at the small-scale. Even these starting studies have offered promising applications in sensing and manipulation of molecules of different types such as DNAs, proteins and viruses as well as small ions. The present thesis focuses on the study and control of the ionic transport through nanometer-size channels, as one of the main applications of nanofluidic features inspired from the protein ion channels present in cell membranes. In the first part of this thesis, the latest developments in the field of nanofluidics are surveyed and a particular attention is given to the methods allowing gating of nanofluidic transport. Different methods of gating the nanofluidic transport are compared and some possible directions for future developments are suggested. Then, a pH-regulated multi-ion model for the electric conductance of nanochannels is introduced. The electrical conductance measurement is a widely used technique for the characterization of nanofluidic devices. Many research groups measured or modeled the electric conductance of nanochannels. Theoretical analysis and experimental investigations imply that the nanochannel conductance does not follow the macro-scale models. It is generally accepted that the conductance of nanochannels deviates from the bulk and tends to a constant value at low ionic concentrations. a new model is presented, which takes into account the surface chemistry of the nanochannel wall and describes the nanochannel conductance at low ionic concentrations in a more realistic way. The electrical conductivity of electrolytes is known to be dependent on temperature. However, the similarity of the temperature sensitivity of the electrical conductivity for bulk and nanochannels has not been validated. In order to examine this dependency, the ionic transport inside the nanochannel was studied. The results from the experimental measurements as well as the analytical modeling show the significant difference between the bulk and the nanoscale. The temperature sensitivity of the electrical conductance of nanochannels is higher at low ionic concentrations where the nanofluidic transport is governed by the electrostatic effects from the wall. Neglecting this effect can result in significant errors for high temperature measurements. Based on the results from temperature sensitivity measurements of the electric conductance of nanochannels, a new nanofluidic gating mechanism is introduced that uses the thermal effect for modulating the ionic transport inside nanofluidic channels. The thermal gate controls the ionic transport more effectively than most other gating mechanisms previously described in scientific literature. Gating in both bulk and overlapping electric double layer regimes is obtained. The response time of the thermal gate is studied and compared with the one of other gating methods. The relatively short time response of the opening and closing processes makes it a good candidate for manipulating small molecules in micro- and nanoscale devices." @default.
- W2214709573 created "2016-06-24" @default.
- W2214709573 creator A5017787996 @default.
- W2214709573 date "2015-01-01" @default.
- W2214709573 modified "2023-09-23" @default.
- W2214709573 title "Investigation of the thermal effects in nanofluidic transport and their application in gating" @default.
- W2214709573 cites W1512695912 @default.
- W2214709573 cites W1536762958 @default.
- W2214709573 cites W1963724953 @default.
- W2214709573 cites W1965337435 @default.
- W2214709573 cites W1965572595 @default.
- W2214709573 cites W1965804331 @default.
- W2214709573 cites W1967166520 @default.
- W2214709573 cites W1968453332 @default.
- W2214709573 cites W1969340103 @default.
- W2214709573 cites W1969954115 @default.
- W2214709573 cites W1970303987 @default.
- W2214709573 cites W1975820577 @default.
- W2214709573 cites W1977327900 @default.
- W2214709573 cites W1977797849 @default.
- W2214709573 cites W1978330231 @default.
- W2214709573 cites W1981252665 @default.
- W2214709573 cites W1982885353 @default.
- W2214709573 cites W1986423178 @default.
- W2214709573 cites W1998102597 @default.
- W2214709573 cites W1999082012 @default.
- W2214709573 cites W2001404323 @default.
- W2214709573 cites W2001773067 @default.
- W2214709573 cites W2005490958 @default.
- W2214709573 cites W2005558657 @default.
- W2214709573 cites W2005856043 @default.
- W2214709573 cites W2009755538 @default.
- W2214709573 cites W2012138685 @default.
- W2214709573 cites W2012794041 @default.
- W2214709573 cites W2015359849 @default.
- W2214709573 cites W2016955159 @default.
- W2214709573 cites W2017742181 @default.
- W2214709573 cites W2017945293 @default.
- W2214709573 cites W2020490521 @default.
- W2214709573 cites W2022690372 @default.
- W2214709573 cites W2024037082 @default.
- W2214709573 cites W2024734834 @default.
- W2214709573 cites W2025141204 @default.
- W2214709573 cites W2026034226 @default.
- W2214709573 cites W2028276783 @default.
- W2214709573 cites W2030125206 @default.
- W2214709573 cites W2030202736 @default.
- W2214709573 cites W2034665066 @default.
- W2214709573 cites W2034867646 @default.
- W2214709573 cites W2035761653 @default.
- W2214709573 cites W2036025200 @default.
- W2214709573 cites W2037189020 @default.
- W2214709573 cites W2039054901 @default.
- W2214709573 cites W2040760627 @default.
- W2214709573 cites W2042238140 @default.
- W2214709573 cites W2042438728 @default.
- W2214709573 cites W2042801303 @default.
- W2214709573 cites W2044211582 @default.
- W2214709573 cites W2044466340 @default.
- W2214709573 cites W2044864474 @default.
- W2214709573 cites W2045982935 @default.
- W2214709573 cites W2048407638 @default.
- W2214709573 cites W2050154189 @default.
- W2214709573 cites W2050599638 @default.
- W2214709573 cites W2052799592 @default.
- W2214709573 cites W2054998582 @default.
- W2214709573 cites W2055205691 @default.
- W2214709573 cites W2056485178 @default.
- W2214709573 cites W2061839241 @default.
- W2214709573 cites W2061949137 @default.
- W2214709573 cites W2068831859 @default.
- W2214709573 cites W2068973343 @default.
- W2214709573 cites W2073118723 @default.
- W2214709573 cites W2073463817 @default.
- W2214709573 cites W2078734329 @default.
- W2214709573 cites W2078809751 @default.
- W2214709573 cites W2082692696 @default.
- W2214709573 cites W2082743706 @default.
- W2214709573 cites W2083306779 @default.
- W2214709573 cites W2084648651 @default.
- W2214709573 cites W2084750927 @default.
- W2214709573 cites W2086183656 @default.
- W2214709573 cites W2087579854 @default.
- W2214709573 cites W2087766224 @default.
- W2214709573 cites W2088260140 @default.
- W2214709573 cites W2088529241 @default.
- W2214709573 cites W2092775415 @default.
- W2214709573 cites W2093517242 @default.
- W2214709573 cites W2095898308 @default.
- W2214709573 cites W2096768639 @default.
- W2214709573 cites W2101974313 @default.
- W2214709573 cites W2104194676 @default.
- W2214709573 cites W2104258896 @default.
- W2214709573 cites W2104623735 @default.
- W2214709573 cites W2105986146 @default.
- W2214709573 cites W2109571515 @default.
- W2214709573 cites W2120253520 @default.
- W2214709573 cites W2121157878 @default.
- W2214709573 cites W2127407003 @default.
- W2214709573 cites W2130869501 @default.