Matches in SemOpenAlex for { <https://semopenalex.org/work/W2214743992> ?p ?o ?g. }
- W2214743992 endingPage "56" @default.
- W2214743992 startingPage "1" @default.
- W2214743992 abstract "In this review I describe results from experiments conducted by the U.S. Geological Survey in diverse volcanic environments to image velocity anomalies in the crust and upper mantle using teleseismic P-wave residuals. The linear least-squares inversion technique of Aki et al. (1976, 1977) is extensively used in these studies. The seismic models thus obtained are synthesized with available geologic and geophysical data to infer plausible models of magma genesis in these regions. The three-dimensional velocity model beneath Yellowstone Plateau shows a large low-velocity body of approximately 100 km diameter centered on the caldera and extending from the crust to a depth of about 250 km. This is interpreted to be a massive magma body which is responsible for the volcanism during the past 2 m. y. in Yellowstone. Teleseismic S-wave residuals, Raleigh-wave dispersion data, heat-flow, gravity, Curie isotherm depths, and magnetotelluric data, all support the existence of a temperature near granite solidus beginning at a depth of 5-10 km beneath the Yellowstone caldera floor. In the Eastern Snake River Plain (ESRP) a low-velocity anomaly is present in the upper mantle but not in the crust, leading to the speculation that ESRP is the healed track of a northeast propagating volcanic center whose present position is Yellowstone. The seismic model for the ESRP-Yellowstone volcanic system, though unable to distinguish between different models of origin of the system, clearly shows that basaltic magma rises from the mantle, melts the lithosphere and yields massive quantities of rhyolitic magma. The seismic velocity structure beneath Hawaii, an oceanic hot spot, shows a complex crustal structure with no evidence for a large magma chamber in the crust. However, in the upper mantle there is an elongate north-south trending low-velocity zone, 200 km wide and traceable to a depth of 165 km. Thus, similar hot-spot generation models in the asthenosphere may be applicable to Yellowstone and Hawaii, though the chemistry and volume of surface volcanism is greatly different in the two areas. In all the six intra-plate silicic volcanic centers which we have probed using the teleseismic-residual technique, low-velocity anomalies, inferred as crustal magma chambers have been found. In at least one such volcanic center, Long Valley in California, uplift and S-wave attenuation measurements support that the magma chamber delineated by tele-seismic residuals is real. The suggestion of a root to the magma chamber extending into the upper mantle supports the geologic model for magma genesis in these centers, namely, infusion of basaltic magma from the asthenosphere into the lithosphere and crust, and resulting partial melting. In contrast to the silicic volcanic centers, none of the andesitic Cascade volcanoes show evidence for crustal magma chambers detectable using the teleseismic technique. Teleseismic-residual data in two volcanoes, Newberry in Oregon, and Medicine Lake in California, show massive high-velocity intrusions in the crust beneath the volcano edifice. A high-resolution seismic imaging experiment has revealed the presence of a low-velocity anomaly which could be a dike-like molten magma pocket within the high-velocity intrusive in Newberry volcano. On a regional scale, the teleseismic residual experiments using long profiles have successfully delineated high-velocity anomalies, possibly related to subduction, in the Oregon Cascades, and a low-velocity anomaly due to asthenospheric upwarp beneath the Rio Grande Rift." @default.
- W2214743992 created "2016-06-24" @default.
- W2214743992 creator A5004236438 @default.
- W2214743992 date "1988-01-01" @default.
- W2214743992 modified "2023-09-29" @default.
- W2214743992 title "Seismological Detection and Delineation of Magma Chambers Beneath Intraplate Volcanic Centers in Western U.S.A." @default.
- W2214743992 cites W1575201008 @default.
- W2214743992 cites W1590567834 @default.
- W2214743992 cites W1654853449 @default.
- W2214743992 cites W1928309406 @default.
- W2214743992 cites W1963642255 @default.
- W2214743992 cites W1966876329 @default.
- W2214743992 cites W1967259368 @default.
- W2214743992 cites W1968439712 @default.
- W2214743992 cites W1968733317 @default.
- W2214743992 cites W1972994715 @default.
- W2214743992 cites W1974730004 @default.
- W2214743992 cites W1979164832 @default.
- W2214743992 cites W1980459367 @default.
- W2214743992 cites W1982053720 @default.
- W2214743992 cites W1982992880 @default.
- W2214743992 cites W1986348313 @default.
- W2214743992 cites W1987007071 @default.
- W2214743992 cites W1992361232 @default.
- W2214743992 cites W1992694511 @default.
- W2214743992 cites W1998024036 @default.
- W2214743992 cites W1998586740 @default.
- W2214743992 cites W2001111854 @default.
- W2214743992 cites W2003294378 @default.
- W2214743992 cites W2004754459 @default.
- W2214743992 cites W2013085771 @default.
- W2214743992 cites W2016939871 @default.
- W2214743992 cites W2019539370 @default.
- W2214743992 cites W2020310469 @default.
- W2214743992 cites W2027869469 @default.
- W2214743992 cites W2033244472 @default.
- W2214743992 cites W2034907523 @default.
- W2214743992 cites W2040028244 @default.
- W2214743992 cites W2045797517 @default.
- W2214743992 cites W2045935506 @default.
- W2214743992 cites W2048050746 @default.
- W2214743992 cites W2053009637 @default.
- W2214743992 cites W2056741239 @default.
- W2214743992 cites W2058469078 @default.
- W2214743992 cites W2059296699 @default.
- W2214743992 cites W2064671428 @default.
- W2214743992 cites W2067807581 @default.
- W2214743992 cites W2069315005 @default.
- W2214743992 cites W2071246362 @default.
- W2214743992 cites W2079677179 @default.
- W2214743992 cites W2080608830 @default.
- W2214743992 cites W2081491543 @default.
- W2214743992 cites W2088507551 @default.
- W2214743992 cites W2090243672 @default.
- W2214743992 cites W2093002188 @default.
- W2214743992 cites W2093646131 @default.
- W2214743992 cites W2098794771 @default.
- W2214743992 cites W2101916354 @default.
- W2214743992 cites W2108612177 @default.
- W2214743992 cites W2113961413 @default.
- W2214743992 cites W2117382974 @default.
- W2214743992 cites W2119315716 @default.
- W2214743992 cites W2121119859 @default.
- W2214743992 cites W2122139149 @default.
- W2214743992 cites W2126500238 @default.
- W2214743992 cites W2132096776 @default.
- W2214743992 cites W2140252973 @default.
- W2214743992 cites W2141642121 @default.
- W2214743992 cites W2144287986 @default.
- W2214743992 cites W2158639478 @default.
- W2214743992 cites W2159183550 @default.
- W2214743992 cites W2164661532 @default.
- W2214743992 cites W2166521036 @default.
- W2214743992 cites W2907409562 @default.
- W2214743992 cites W3021166610 @default.
- W2214743992 cites W402323626 @default.
- W2214743992 cites W4236228904 @default.
- W2214743992 cites W4250226026 @default.
- W2214743992 cites W4293783237 @default.
- W2214743992 cites W4376522304 @default.
- W2214743992 doi "https://doi.org/10.1007/978-3-322-89414-4_1" @default.
- W2214743992 hasPublicationYear "1988" @default.
- W2214743992 type Work @default.
- W2214743992 sameAs 2214743992 @default.
- W2214743992 citedByCount "10" @default.
- W2214743992 crossrefType "book-chapter" @default.
- W2214743992 hasAuthorship W2214743992A5004236438 @default.
- W2214743992 hasConcept C104962623 @default.
- W2214743992 hasConcept C120806208 @default.
- W2214743992 hasConcept C127313418 @default.
- W2214743992 hasConcept C165205528 @default.
- W2214743992 hasConcept C16942324 @default.
- W2214743992 hasConcept C17409809 @default.
- W2214743992 hasConcept C183222429 @default.
- W2214743992 hasConcept C192241223 @default.
- W2214743992 hasConcept C25822816 @default.
- W2214743992 hasConcept C2776698055 @default.
- W2214743992 hasConcept C49708893 @default.