Matches in SemOpenAlex for { <https://semopenalex.org/work/W2215263412> ?p ?o ?g. }
- W2215263412 abstract "Abstract : Recent years have seen explosive growth in data, models and computation. Massive data sets and sophisticated probabilistic models are increasingly used in the fields of high-energy physics, biology genetics and in personalization applications; however, many statistical algorithms remain inefficient impeding scientific progress. In this thesis, we present several efficient statistical algorithms for learning from massive discrete data sets. We focus on discrete data because complex and structured activity such as chromosome folding in three dimensions, human genetic variation, social network interactions and product ratings are often encoded as simple matrices of discrete numerical observations. Our algorithms derive from a Bayesian perspective and lie in the framework of directed graphical models and mean- field variational inference. Situated in this framework, we gain computational and statistical efficiency through modeling insights and through subsampling informative data during inference. We begin with additive Poisson factorization models for recommending items to users based on user consumption or ratings. These models provide sparse latent representations of users and items and capture the long-tailed distributions of user consumption. We use them as building blocks for article recommendation models by sharing latent spaces across readership and article text. We demonstrate that our algorithms scale to massive data sets, are easy to implement and provide competitive user recommendations. Then, we develop a Bayesian nonparametric model in which the latent representations of users and items grow to accommodate new data. In the second part of the thesis, we develop novel algorithms for discovering overlapping communities in large networks." @default.
- W2215263412 created "2016-06-24" @default.
- W2215263412 creator A5031364854 @default.
- W2215263412 date "2015-01-01" @default.
- W2215263412 modified "2023-09-27" @default.
- W2215263412 title "Scalable inference of discrete data: User behavior, networks and genetic variation" @default.
- W2215263412 cites W130710483 @default.
- W2215263412 cites W1489244361 @default.
- W2215263412 cites W1516111018 @default.
- W2215263412 cites W1528905581 @default.
- W2215263412 cites W1545357565 @default.
- W2215263412 cites W1556219185 @default.
- W2215263412 cites W1563739387 @default.
- W2215263412 cites W1570770495 @default.
- W2215263412 cites W1576463166 @default.
- W2215263412 cites W166614460 @default.
- W2215263412 cites W1871641673 @default.
- W2215263412 cites W1880262756 @default.
- W2215263412 cites W1902027874 @default.
- W2215263412 cites W195465510 @default.
- W2215263412 cites W1955368298 @default.
- W2215263412 cites W1966342871 @default.
- W2215263412 cites W1967396577 @default.
- W2215263412 cites W1967573895 @default.
- W2215263412 cites W1972675431 @default.
- W2215263412 cites W1976526581 @default.
- W2215263412 cites W1986966428 @default.
- W2215263412 cites W1991408655 @default.
- W2215263412 cites W1994616650 @default.
- W2215263412 cites W1997476591 @default.
- W2215263412 cites W2004531067 @default.
- W2215263412 cites W2015953751 @default.
- W2215263412 cites W2018304737 @default.
- W2215263412 cites W2019144999 @default.
- W2215263412 cites W2020631728 @default.
- W2215263412 cites W2020999234 @default.
- W2215263412 cites W2025994725 @default.
- W2215263412 cites W2028080169 @default.
- W2215263412 cites W2029143135 @default.
- W2215263412 cites W2031696998 @default.
- W2215263412 cites W2031988475 @default.
- W2215263412 cites W2032005951 @default.
- W2215263412 cites W2040956707 @default.
- W2215263412 cites W2047940964 @default.
- W2215263412 cites W2049633694 @default.
- W2215263412 cites W2050019102 @default.
- W2215263412 cites W2054141820 @default.
- W2215263412 cites W2056760934 @default.
- W2215263412 cites W2064076655 @default.
- W2215263412 cites W2065093891 @default.
- W2215263412 cites W2066459332 @default.
- W2215263412 cites W2066828202 @default.
- W2215263412 cites W2067668838 @default.
- W2215263412 cites W2070262292 @default.
- W2215263412 cites W2070996757 @default.
- W2215263412 cites W2083390520 @default.
- W2215263412 cites W2085040216 @default.
- W2215263412 cites W2085534751 @default.
- W2215263412 cites W2085937320 @default.
- W2215263412 cites W2095293504 @default.
- W2215263412 cites W2095721433 @default.
- W2215263412 cites W2096791516 @default.
- W2215263412 cites W2097147952 @default.
- W2215263412 cites W2097230740 @default.
- W2215263412 cites W2097576041 @default.
- W2215263412 cites W2098084154 @default.
- W2215263412 cites W2098126593 @default.
- W2215263412 cites W2102486516 @default.
- W2215263412 cites W2103878673 @default.
- W2215263412 cites W2104192125 @default.
- W2215263412 cites W2107107106 @default.
- W2215263412 cites W2108456278 @default.
- W2215263412 cites W2110620844 @default.
- W2215263412 cites W2111817932 @default.
- W2215263412 cites W2113526703 @default.
- W2215263412 cites W2115305054 @default.
- W2215263412 cites W2115938734 @default.
- W2215263412 cites W2116433231 @default.
- W2215263412 cites W2117420919 @default.
- W2215263412 cites W2119444539 @default.
- W2215263412 cites W2119998616 @default.
- W2215263412 cites W2120340025 @default.
- W2215263412 cites W2122467621 @default.
- W2215263412 cites W2128990575 @default.
- W2215263412 cites W2135505871 @default.
- W2215263412 cites W2137245235 @default.
- W2215263412 cites W2138309709 @default.
- W2215263412 cites W2138556224 @default.
- W2215263412 cites W2139750075 @default.
- W2215263412 cites W2140310134 @default.
- W2215263412 cites W2142170653 @default.
- W2215263412 cites W2144799688 @default.
- W2215263412 cites W2146591355 @default.
- W2215263412 cites W2146682077 @default.
- W2215263412 cites W2148606196 @default.
- W2215263412 cites W2151544098 @default.
- W2215263412 cites W2152284345 @default.
- W2215263412 cites W2156592887 @default.
- W2215263412 cites W2161633633 @default.
- W2215263412 cites W2163021329 @default.