Matches in SemOpenAlex for { <https://semopenalex.org/work/W2215331446> ?p ?o ?g. }
- W2215331446 endingPage "366" @default.
- W2215331446 startingPage "301" @default.
- W2215331446 abstract "Open AccessOpen Access licenseAboutSectionsView PDF ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InEmail Go to SectionOpen AccessOpen Access license HomeStochastic SystemsVol. 6, No. 2 Stein’s Method for Steady-state Diffusion Approximations: An Introduction through the Erlang-A and Erlang-C ModelsAnton Braverman, J. G. Dai, Jiekun FengAnton Braverman, J. G. Dai, Jiekun FengPublished Online:17 Feb 2017https://doi.org/10.1287/15-SSY212AbstractThis paper provides an introduction to the Stein method framework in the context of steady-state diffusion approximations. The framework consists of three components: the Poisson equation and gradient bounds, generator coupling, and moment bounds. Working in the setting of the Erlang-A and Erlang-C models, we prove that both Wasserstein and Kolmogorov distances between the stationary distribution of a normalized customer count process, and that of an appropriately defined diffusion process decrease at a rate of 1/R, where R is the offered load. Futhermore, these error bounds are universal, valid in any load condition from lightly loaded to heavily loaded. Previous Back to Top Next FiguresReferencesRelatedInformationCited byHigh-Order Steady-State Diffusion ApproximationsAnton Braverman, J. G. Dai, Xiao Fang8 September 2022 | Operations Research, Vol. 0, No. 0The Prelimit Generator Comparison Approach of Stein’s MethodAnton Braverman16 December 2021 | Stochastic Systems, Vol. 12, No. 2Steady-State Analysis of the Join-the-Shortest-Queue Model in the Halfin–Whitt RegimeAnton Braverman10 April 2020 | Mathematics of Operations Research, Vol. 45, No. 3On the Approximation Error of Mean-Field ModelsLei Ying11 May 2018 | Stochastic Systems, Vol. 8, No. 2Heavy Traffic Approximation for the Stationary Distribution of a Generalized Jackson Network: The BAR ApproachAnton Braverman, J. G. Dai, Masakiyo Miyazawa5 May 2017 | Stochastic Systems, Vol. 7, No. 1 Volume 6, Issue 2December 2016Pages 251-600 Article Information Metrics Information Received:December 01, 2015Published Online:February 17, 2017 Copyright © 2016, The author(s)Cite asAnton Braverman, J. G. Dai, Jiekun Feng (2017) Stein’s Method for Steady-state Diffusion Approximations: An Introduction through the Erlang-A and Erlang-C Models. Stochastic Systems 6(2):301-366. https://doi.org/10.1287/15-SSY212 KeywordsStein’s methodsteady-statediffusion approximationconvergence ratesErlang-AErlang-CPDF download" @default.
- W2215331446 created "2016-06-24" @default.
- W2215331446 creator A5035737339 @default.
- W2215331446 creator A5056299602 @default.
- W2215331446 creator A5071691026 @default.
- W2215331446 date "2016-01-01" @default.
- W2215331446 modified "2023-09-23" @default.
- W2215331446 title "Stein’s method for steady-state diffusion approximations: An introduction through the Erlang-A and Erlang-C models" @default.
- W2215331446 cites W1587704401 @default.
- W2215331446 cites W1593035888 @default.
- W2215331446 cites W1632171083 @default.
- W2215331446 cites W1873595945 @default.
- W2215331446 cites W1969987518 @default.
- W2215331446 cites W1974927663 @default.
- W2215331446 cites W1983314966 @default.
- W2215331446 cites W1993474005 @default.
- W2215331446 cites W1999102639 @default.
- W2215331446 cites W2010728860 @default.
- W2215331446 cites W2011786610 @default.
- W2215331446 cites W2013334040 @default.
- W2215331446 cites W2014983867 @default.
- W2215331446 cites W2015660479 @default.
- W2215331446 cites W2021290840 @default.
- W2215331446 cites W2025050999 @default.
- W2215331446 cites W2032916024 @default.
- W2215331446 cites W2049090397 @default.
- W2215331446 cites W2053899506 @default.
- W2215331446 cites W2055491565 @default.
- W2215331446 cites W2063522056 @default.
- W2215331446 cites W2080554766 @default.
- W2215331446 cites W2088307689 @default.
- W2215331446 cites W2089274110 @default.
- W2215331446 cites W2106760367 @default.
- W2215331446 cites W2110556347 @default.
- W2215331446 cites W2119338125 @default.
- W2215331446 cites W2126545263 @default.
- W2215331446 cites W2126794261 @default.
- W2215331446 cites W2139346833 @default.
- W2215331446 cites W2147191706 @default.
- W2215331446 cites W2167595480 @default.
- W2215331446 cites W2168167223 @default.
- W2215331446 cites W2168676373 @default.
- W2215331446 cites W2963917527 @default.
- W2215331446 cites W3104659353 @default.
- W2215331446 cites W364436601 @default.
- W2215331446 cites W7498473 @default.
- W2215331446 cites W9811568 @default.
- W2215331446 doi "https://doi.org/10.1214/15-ssy212" @default.
- W2215331446 hasPublicationYear "2016" @default.
- W2215331446 type Work @default.
- W2215331446 sameAs 2215331446 @default.
- W2215331446 citedByCount "5" @default.
- W2215331446 countsByYear W22153314462016 @default.
- W2215331446 countsByYear W22153314462017 @default.
- W2215331446 countsByYear W22153314462023 @default.
- W2215331446 crossrefType "journal-article" @default.
- W2215331446 hasAuthorship W2215331446A5035737339 @default.
- W2215331446 hasAuthorship W2215331446A5056299602 @default.
- W2215331446 hasAuthorship W2215331446A5071691026 @default.
- W2215331446 hasBestOaLocation W22153314461 @default.
- W2215331446 hasConcept C100906024 @default.
- W2215331446 hasConcept C105795698 @default.
- W2215331446 hasConcept C118615104 @default.
- W2215331446 hasConcept C145437242 @default.
- W2215331446 hasConcept C193290586 @default.
- W2215331446 hasConcept C193386753 @default.
- W2215331446 hasConcept C28826006 @default.
- W2215331446 hasConcept C33923547 @default.
- W2215331446 hasConcept C41008148 @default.
- W2215331446 hasConcept C42383842 @default.
- W2215331446 hasConcept C55350006 @default.
- W2215331446 hasConcept C80444323 @default.
- W2215331446 hasConcept C82484044 @default.
- W2215331446 hasConceptScore W2215331446C100906024 @default.
- W2215331446 hasConceptScore W2215331446C105795698 @default.
- W2215331446 hasConceptScore W2215331446C118615104 @default.
- W2215331446 hasConceptScore W2215331446C145437242 @default.
- W2215331446 hasConceptScore W2215331446C193290586 @default.
- W2215331446 hasConceptScore W2215331446C193386753 @default.
- W2215331446 hasConceptScore W2215331446C28826006 @default.
- W2215331446 hasConceptScore W2215331446C33923547 @default.
- W2215331446 hasConceptScore W2215331446C41008148 @default.
- W2215331446 hasConceptScore W2215331446C42383842 @default.
- W2215331446 hasConceptScore W2215331446C55350006 @default.
- W2215331446 hasConceptScore W2215331446C80444323 @default.
- W2215331446 hasConceptScore W2215331446C82484044 @default.
- W2215331446 hasIssue "2" @default.
- W2215331446 hasLocation W22153314461 @default.
- W2215331446 hasLocation W22153314462 @default.
- W2215331446 hasLocation W22153314463 @default.
- W2215331446 hasOpenAccess W2215331446 @default.
- W2215331446 hasPrimaryLocation W22153314461 @default.
- W2215331446 hasRelatedWork W1578493063 @default.
- W2215331446 hasRelatedWork W1972013893 @default.
- W2215331446 hasRelatedWork W2011768167 @default.
- W2215331446 hasRelatedWork W2023678444 @default.
- W2215331446 hasRelatedWork W2043347880 @default.
- W2215331446 hasRelatedWork W2140547057 @default.