Matches in SemOpenAlex for { <https://semopenalex.org/work/W2215363054> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2215363054 endingPage "1705" @default.
- W2215363054 startingPage "1689" @default.
- W2215363054 abstract "This paper is motivated from a retrospective study of the impact of vitamin D deficiency on the clinical outcomes for critically ill patients in multi‐center critical care units. The primary predictors of interest, vitamin D2 and D3 levels, are censored at a known detection limit. Within the context of generalized linear mixed models, we investigate statistical methods to handle multiple censored predictors in the presence of auxiliary variables. A Bayesian joint modeling approach is proposed to fit the complex heterogeneous multi‐center data, in which the data information is fully used to estimate parameters of interest. Efficient Monte Carlo Markov chain algorithms are specifically developed depending on the nature of the response. Simulation studies demonstrate the outperformance of the proposed Bayesian approach over other existing methods. An application to the data set from the vitamin D deficiency study is presented. Possible extensions of the method regarding the absence of auxiliary variables, semiparametric models, as well as the type of censoring are also discussed. Copyright © 2015 John Wiley & Sons, Ltd." @default.
- W2215363054 created "2016-06-24" @default.
- W2215363054 creator A5060268098 @default.
- W2215363054 creator A5075707588 @default.
- W2215363054 date "2015-12-07" @default.
- W2215363054 modified "2023-09-23" @default.
- W2215363054 title "Bayesian inference for generalized linear mixed models with predictors subject to detection limits: an approach that leverages information from auxiliary variables" @default.
- W2215363054 cites W1487848695 @default.
- W2215363054 cites W1536497620 @default.
- W2215363054 cites W1975804982 @default.
- W2215363054 cites W1976928029 @default.
- W2215363054 cites W1979194688 @default.
- W2215363054 cites W2016709601 @default.
- W2215363054 cites W2019217774 @default.
- W2215363054 cites W2019426469 @default.
- W2215363054 cites W2022899350 @default.
- W2215363054 cites W2025672869 @default.
- W2215363054 cites W2051817458 @default.
- W2215363054 cites W2055452622 @default.
- W2215363054 cites W2057829568 @default.
- W2215363054 cites W2082935924 @default.
- W2215363054 cites W2085550445 @default.
- W2215363054 cites W2096115181 @default.
- W2215363054 cites W2099434245 @default.
- W2215363054 cites W2102236934 @default.
- W2215363054 cites W2115135916 @default.
- W2215363054 cites W2127175235 @default.
- W2215363054 cites W2136825758 @default.
- W2215363054 cites W2139255721 @default.
- W2215363054 cites W2145771602 @default.
- W2215363054 cites W2167088056 @default.
- W2215363054 cites W4302338619 @default.
- W2215363054 cites W4324114579 @default.
- W2215363054 doi "https://doi.org/10.1002/sim.6830" @default.
- W2215363054 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26643287" @default.
- W2215363054 hasPublicationYear "2015" @default.
- W2215363054 type Work @default.
- W2215363054 sameAs 2215363054 @default.
- W2215363054 citedByCount "4" @default.
- W2215363054 countsByYear W22153630542017 @default.
- W2215363054 countsByYear W22153630542019 @default.
- W2215363054 countsByYear W22153630542022 @default.
- W2215363054 crossrefType "journal-article" @default.
- W2215363054 hasAuthorship W2215363054A5060268098 @default.
- W2215363054 hasAuthorship W2215363054A5075707588 @default.
- W2215363054 hasConcept C105795698 @default.
- W2215363054 hasConcept C107673813 @default.
- W2215363054 hasConcept C111350023 @default.
- W2215363054 hasConcept C119043178 @default.
- W2215363054 hasConcept C119857082 @default.
- W2215363054 hasConcept C137668524 @default.
- W2215363054 hasConcept C149782125 @default.
- W2215363054 hasConcept C151730666 @default.
- W2215363054 hasConcept C154945302 @default.
- W2215363054 hasConcept C2776214188 @default.
- W2215363054 hasConcept C2779343474 @default.
- W2215363054 hasConcept C33923547 @default.
- W2215363054 hasConcept C41008148 @default.
- W2215363054 hasConcept C86803240 @default.
- W2215363054 hasConceptScore W2215363054C105795698 @default.
- W2215363054 hasConceptScore W2215363054C107673813 @default.
- W2215363054 hasConceptScore W2215363054C111350023 @default.
- W2215363054 hasConceptScore W2215363054C119043178 @default.
- W2215363054 hasConceptScore W2215363054C119857082 @default.
- W2215363054 hasConceptScore W2215363054C137668524 @default.
- W2215363054 hasConceptScore W2215363054C149782125 @default.
- W2215363054 hasConceptScore W2215363054C151730666 @default.
- W2215363054 hasConceptScore W2215363054C154945302 @default.
- W2215363054 hasConceptScore W2215363054C2776214188 @default.
- W2215363054 hasConceptScore W2215363054C2779343474 @default.
- W2215363054 hasConceptScore W2215363054C33923547 @default.
- W2215363054 hasConceptScore W2215363054C41008148 @default.
- W2215363054 hasConceptScore W2215363054C86803240 @default.
- W2215363054 hasIssue "10" @default.
- W2215363054 hasLocation W22153630541 @default.
- W2215363054 hasLocation W22153630542 @default.
- W2215363054 hasOpenAccess W2215363054 @default.
- W2215363054 hasPrimaryLocation W22153630541 @default.
- W2215363054 hasRelatedWork W1730173098 @default.
- W2215363054 hasRelatedWork W1858985792 @default.
- W2215363054 hasRelatedWork W2005655839 @default.
- W2215363054 hasRelatedWork W2037749392 @default.
- W2215363054 hasRelatedWork W2053310356 @default.
- W2215363054 hasRelatedWork W2115644788 @default.
- W2215363054 hasRelatedWork W2328974004 @default.
- W2215363054 hasRelatedWork W3015026561 @default.
- W2215363054 hasRelatedWork W3156551402 @default.
- W2215363054 hasRelatedWork W4210330001 @default.
- W2215363054 hasVolume "35" @default.
- W2215363054 isParatext "false" @default.
- W2215363054 isRetracted "false" @default.
- W2215363054 magId "2215363054" @default.
- W2215363054 workType "article" @default.