Matches in SemOpenAlex for { <https://semopenalex.org/work/W2215710308> ?p ?o ?g. }
- W2215710308 endingPage "22" @default.
- W2215710308 startingPage "9" @default.
- W2215710308 abstract "MicroRNAs (miRNAs) are short (~21 nt) nucleotide sequences that are either co-transcribed during the production of mRNA or are organized in intergenic regions transcribed by RNA polymerase II. In animals, Drosha, and in plants DCL1 recognize pre-miRNAs which set themselves apart by their characteristic stem loop (hairpin) structure. This structure appears important for their recognition during the process of maturation leading to functioning mature miRNAs. A large body of research is available for computational pre-miRNA detection in animals, but less within the plant kingdom. For the prediction of pre-miRNAs, usually machine learning approaches are employed. Therefore, it is necessary to convert the pre-miRNAs into a set of features that can be calculated and many such features have been described. We here select a subset of the previously described features and add sequence motifs as new features. The resulting model which we called MotifmiRNAPred was tested on known pre-miRNAs listed in miRBase and its accuracy was compared to existing approaches in the field. With an accuracy of 99.95% for the generalized plant model, it distinguishes itself from previously published results which reach an average accuracy between 74% and 98%. We believe that our approach is useful for prediction of pre-miRNAs in plants without per species adjustment." @default.
- W2215710308 created "2016-06-24" @default.
- W2215710308 creator A5043036637 @default.
- W2215710308 creator A5067023018 @default.
- W2215710308 creator A5091900270 @default.
- W2215710308 date "2016-01-01" @default.
- W2215710308 modified "2023-09-30" @default.
- W2215710308 title "Accurate Plant MicroRNA Prediction Can Be Achieved Using Sequence Motif Features" @default.
- W2215710308 cites W143388089 @default.
- W2215710308 cites W1491989688 @default.
- W2215710308 cites W1592870802 @default.
- W2215710308 cites W1607822593 @default.
- W2215710308 cites W1845151788 @default.
- W2215710308 cites W1920564293 @default.
- W2215710308 cites W1958284284 @default.
- W2215710308 cites W1967517087 @default.
- W2215710308 cites W1984385688 @default.
- W2215710308 cites W1992941735 @default.
- W2215710308 cites W2017426710 @default.
- W2215710308 cites W2022572617 @default.
- W2215710308 cites W2023968607 @default.
- W2215710308 cites W2030573509 @default.
- W2215710308 cites W2046584841 @default.
- W2215710308 cites W2051535323 @default.
- W2215710308 cites W2051728363 @default.
- W2215710308 cites W2063555458 @default.
- W2215710308 cites W2067926173 @default.
- W2215710308 cites W2079165446 @default.
- W2215710308 cites W2093213907 @default.
- W2215710308 cites W2097984977 @default.
- W2215710308 cites W2098044747 @default.
- W2215710308 cites W2099660828 @default.
- W2215710308 cites W2106144124 @default.
- W2215710308 cites W2106423003 @default.
- W2215710308 cites W2107961632 @default.
- W2215710308 cites W2110101814 @default.
- W2215710308 cites W2114973325 @default.
- W2215710308 cites W2116013589 @default.
- W2215710308 cites W2120583228 @default.
- W2215710308 cites W2120794445 @default.
- W2215710308 cites W2121852482 @default.
- W2215710308 cites W2123994260 @default.
- W2215710308 cites W2134242190 @default.
- W2215710308 cites W2134484537 @default.
- W2215710308 cites W2138154105 @default.
- W2215710308 cites W2138664009 @default.
- W2215710308 cites W2139135429 @default.
- W2215710308 cites W2140446903 @default.
- W2215710308 cites W2140751493 @default.
- W2215710308 cites W2143426320 @default.
- W2215710308 cites W2146757999 @default.
- W2215710308 cites W2148317584 @default.
- W2215710308 cites W2149009156 @default.
- W2215710308 cites W2150767213 @default.
- W2215710308 cites W2150770935 @default.
- W2215710308 cites W2151922790 @default.
- W2215710308 cites W2153635508 @default.
- W2215710308 cites W2154513100 @default.
- W2215710308 cites W2156909104 @default.
- W2215710308 cites W2157009395 @default.
- W2215710308 cites W2161283857 @default.
- W2215710308 cites W2162407382 @default.
- W2215710308 cites W2167557255 @default.
- W2215710308 cites W2335429246 @default.
- W2215710308 cites W2345987083 @default.
- W2215710308 cites W2397041887 @default.
- W2215710308 cites W2418959584 @default.
- W2215710308 cites W2470585343 @default.
- W2215710308 cites W2888809528 @default.
- W2215710308 doi "https://doi.org/10.4236/jilsa.2016.81002" @default.
- W2215710308 hasPublicationYear "2016" @default.
- W2215710308 type Work @default.
- W2215710308 sameAs 2215710308 @default.
- W2215710308 citedByCount "9" @default.
- W2215710308 countsByYear W22157103082016 @default.
- W2215710308 countsByYear W22157103082019 @default.
- W2215710308 countsByYear W22157103082020 @default.
- W2215710308 countsByYear W22157103082021 @default.
- W2215710308 crossrefType "journal-article" @default.
- W2215710308 hasAuthorship W2215710308A5043036637 @default.
- W2215710308 hasAuthorship W2215710308A5067023018 @default.
- W2215710308 hasAuthorship W2215710308A5091900270 @default.
- W2215710308 hasBestOaLocation W22157103081 @default.
- W2215710308 hasConcept C104317684 @default.
- W2215710308 hasConcept C141231307 @default.
- W2215710308 hasConcept C145059251 @default.
- W2215710308 hasConcept C154945302 @default.
- W2215710308 hasConcept C166703698 @default.
- W2215710308 hasConcept C169663058 @default.
- W2215710308 hasConcept C195139083 @default.
- W2215710308 hasConcept C2776802755 @default.
- W2215710308 hasConcept C2778112365 @default.
- W2215710308 hasConcept C41008148 @default.
- W2215710308 hasConcept C49305753 @default.
- W2215710308 hasConcept C54355233 @default.
- W2215710308 hasConcept C67705224 @default.
- W2215710308 hasConcept C70721500 @default.
- W2215710308 hasConcept C86803240 @default.