Matches in SemOpenAlex for { <https://semopenalex.org/work/W2217066517> ?p ?o ?g. }
- W2217066517 endingPage "1346" @default.
- W2217066517 startingPage "1340" @default.
- W2217066517 abstract "We present a neural network method for review rating prediction in this paper. Existing neural network methods for sentiment prediction typically only capture the semantics of texts, but ignore the user who expresses the sentiment. This is not desirable for review rating prediction as each user has an influence on how to interpret the textual content of a review. For example, the same word (e.g. good) might indicate different sentiment strengths when written by different users. We address this issue by developing a new neural network that takes user information into account. The intuition is to factor in user-specific modification to the meaning of a certain word. Specifically, we extend the lexical semantic composition models and introduce a userword composition vector model (UWCVM), which effectively captures how user acts as a function affecting the continuous word representation. We integrate UWCVM into a supervised learning framework for review rating prediction, and conduct experiments on two benchmark review datasets. Experimental results demonstrate the effectiveness of our method. It shows superior performances over several strong baseline methods." @default.
- W2217066517 created "2016-06-24" @default.
- W2217066517 creator A5017671620 @default.
- W2217066517 creator A5030381144 @default.
- W2217066517 creator A5052842216 @default.
- W2217066517 creator A5057382261 @default.
- W2217066517 date "2015-07-25" @default.
- W2217066517 modified "2023-10-03" @default.
- W2217066517 title "User modeling with neural network for review rating prediction" @default.
- W2217066517 cites W1506229096 @default.
- W2217066517 cites W1608322251 @default.
- W2217066517 cites W1889268436 @default.
- W2217066517 cites W193333623 @default.
- W2217066517 cites W1984052055 @default.
- W2217066517 cites W2001892351 @default.
- W2217066517 cites W2022204871 @default.
- W2217066517 cites W2095705004 @default.
- W2217066517 cites W2105745022 @default.
- W2217066517 cites W2108646579 @default.
- W2217066517 cites W2113459411 @default.
- W2217066517 cites W2116959421 @default.
- W2217066517 cites W2118585731 @default.
- W2217066517 cites W2120615054 @default.
- W2217066517 cites W2131744502 @default.
- W2217066517 cites W2142074148 @default.
- W2217066517 cites W2142972908 @default.
- W2217066517 cites W2143570397 @default.
- W2217066517 cites W2153579005 @default.
- W2217066517 cites W2163455955 @default.
- W2217066517 cites W2163922914 @default.
- W2217066517 cites W2166706824 @default.
- W2217066517 cites W2250539671 @default.
- W2217066517 cites W2250879510 @default.
- W2217066517 cites W2251336532 @default.
- W2217066517 cites W2251770468 @default.
- W2217066517 cites W2251939518 @default.
- W2217066517 cites W22861983 @default.
- W2217066517 cites W2793391459 @default.
- W2217066517 cites W2949541494 @default.
- W2217066517 cites W2950830772 @default.
- W2217066517 cites W3104097132 @default.
- W2217066517 cites W2251313565 @default.
- W2217066517 hasPublicationYear "2015" @default.
- W2217066517 type Work @default.
- W2217066517 sameAs 2217066517 @default.
- W2217066517 citedByCount "35" @default.
- W2217066517 countsByYear W22170665172015 @default.
- W2217066517 countsByYear W22170665172016 @default.
- W2217066517 countsByYear W22170665172017 @default.
- W2217066517 countsByYear W22170665172018 @default.
- W2217066517 countsByYear W22170665172019 @default.
- W2217066517 countsByYear W22170665172020 @default.
- W2217066517 countsByYear W22170665172021 @default.
- W2217066517 crossrefType "proceedings-article" @default.
- W2217066517 hasAuthorship W2217066517A5017671620 @default.
- W2217066517 hasAuthorship W2217066517A5030381144 @default.
- W2217066517 hasAuthorship W2217066517A5052842216 @default.
- W2217066517 hasAuthorship W2217066517A5057382261 @default.
- W2217066517 hasConcept C111472728 @default.
- W2217066517 hasConcept C119857082 @default.
- W2217066517 hasConcept C132010649 @default.
- W2217066517 hasConcept C13280743 @default.
- W2217066517 hasConcept C138885662 @default.
- W2217066517 hasConcept C154945302 @default.
- W2217066517 hasConcept C184337299 @default.
- W2217066517 hasConcept C185798385 @default.
- W2217066517 hasConcept C199360897 @default.
- W2217066517 hasConcept C204321447 @default.
- W2217066517 hasConcept C205649164 @default.
- W2217066517 hasConcept C41008148 @default.
- W2217066517 hasConcept C41895202 @default.
- W2217066517 hasConcept C50644808 @default.
- W2217066517 hasConcept C66402592 @default.
- W2217066517 hasConcept C90805587 @default.
- W2217066517 hasConceptScore W2217066517C111472728 @default.
- W2217066517 hasConceptScore W2217066517C119857082 @default.
- W2217066517 hasConceptScore W2217066517C132010649 @default.
- W2217066517 hasConceptScore W2217066517C13280743 @default.
- W2217066517 hasConceptScore W2217066517C138885662 @default.
- W2217066517 hasConceptScore W2217066517C154945302 @default.
- W2217066517 hasConceptScore W2217066517C184337299 @default.
- W2217066517 hasConceptScore W2217066517C185798385 @default.
- W2217066517 hasConceptScore W2217066517C199360897 @default.
- W2217066517 hasConceptScore W2217066517C204321447 @default.
- W2217066517 hasConceptScore W2217066517C205649164 @default.
- W2217066517 hasConceptScore W2217066517C41008148 @default.
- W2217066517 hasConceptScore W2217066517C41895202 @default.
- W2217066517 hasConceptScore W2217066517C50644808 @default.
- W2217066517 hasConceptScore W2217066517C66402592 @default.
- W2217066517 hasConceptScore W2217066517C90805587 @default.
- W2217066517 hasLocation W22170665171 @default.
- W2217066517 hasOpenAccess W2217066517 @default.
- W2217066517 hasPrimaryLocation W22170665171 @default.
- W2217066517 hasRelatedWork W1506229096 @default.
- W2217066517 hasRelatedWork W1832693441 @default.
- W2217066517 hasRelatedWork W1880262756 @default.
- W2217066517 hasRelatedWork W2054141820 @default.
- W2217066517 hasRelatedWork W2061873838 @default.