Matches in SemOpenAlex for { <https://semopenalex.org/work/W2217207621> ?p ?o ?g. }
- W2217207621 abstract "Datasets gathered from sensor networks often suffer from a significant fraction of missing data, due to issues such as communication and sensor interference, power depletion, and hardware failure. Many standard data analysis tools such as classification engines, time-sequence pattern analysis modules, and statistical tools are ill-equipped to deal with missing values — hence, there is a vital need for highly-accurate techniques for imputing missing readings prior to analysis. This paper presents novel imputation methods that take a view of the problem: the sensors and their readings at each time step are viewed as products and user product ratings, with the goal of estimating the missing ratings. Sensor readings differ from product ratings, however, in that the former exhibit high correlation in both time and space. To incorporate this property, we modify the widely successful matrix factorization approach for recommendation systems to model inter-sensor and intra-sensor correlations and learn latent relationships among these dimensions. We evaluate the approach using two sensor network datasets, one indoor and one outdoor, and two imputation scenarios, corresponding to intermittent readings and failed sensors. Next, we consider sensor networks with multiple sensor types at each node. We present two techniques for extending our model to account for possible correlations among sensor types (e.g., temperature and humidity) with promising results. Finally, we study how the imputed values affect the result of data analysis. We consider a popular data analysis task — building regression-based prediction models — and show that, compared to prior approaches for imputation, our method leads to a much higher quality prediction model." @default.
- W2217207621 created "2016-06-24" @default.
- W2217207621 creator A5014824446 @default.
- W2217207621 creator A5027572002 @default.
- W2217207621 creator A5039703678 @default.
- W2217207621 creator A5051790995 @default.
- W2217207621 creator A5060831778 @default.
- W2217207621 creator A5077396656 @default.
- W2217207621 creator A5084974609 @default.
- W2217207621 date "2015-10-01" @default.
- W2217207621 modified "2023-09-26" @default.
- W2217207621 title "Recommending missing sensor values" @default.
- W2217207621 cites W1511814458 @default.
- W2217207621 cites W191253868 @default.
- W2217207621 cites W1977280501 @default.
- W2217207621 cites W1982012380 @default.
- W2217207621 cites W2000215628 @default.
- W2217207621 cites W2045240677 @default.
- W2217207621 cites W2049114920 @default.
- W2217207621 cites W2054141820 @default.
- W2217207621 cites W2070807660 @default.
- W2217207621 cites W2102937240 @default.
- W2217207621 cites W2104275550 @default.
- W2217207621 cites W2106977727 @default.
- W2217207621 cites W2114009629 @default.
- W2217207621 cites W2116659053 @default.
- W2217207621 cites W2120270028 @default.
- W2217207621 cites W2126333155 @default.
- W2217207621 cites W2126762950 @default.
- W2217207621 cites W2137245235 @default.
- W2217207621 cites W2137434741 @default.
- W2217207621 cites W2154721480 @default.
- W2217207621 cites W2158321725 @default.
- W2217207621 cites W2176494706 @default.
- W2217207621 cites W2371595144 @default.
- W2217207621 cites W2400220933 @default.
- W2217207621 cites W84374273 @default.
- W2217207621 doi "https://doi.org/10.1109/bigdata.2015.7363779" @default.
- W2217207621 hasPublicationYear "2015" @default.
- W2217207621 type Work @default.
- W2217207621 sameAs 2217207621 @default.
- W2217207621 citedByCount "7" @default.
- W2217207621 countsByYear W22172076212017 @default.
- W2217207621 countsByYear W22172076212019 @default.
- W2217207621 countsByYear W22172076212021 @default.
- W2217207621 countsByYear W22172076212022 @default.
- W2217207621 crossrefType "proceedings-article" @default.
- W2217207621 hasAuthorship W2217207621A5014824446 @default.
- W2217207621 hasAuthorship W2217207621A5027572002 @default.
- W2217207621 hasAuthorship W2217207621A5039703678 @default.
- W2217207621 hasAuthorship W2217207621A5051790995 @default.
- W2217207621 hasAuthorship W2217207621A5060831778 @default.
- W2217207621 hasAuthorship W2217207621A5077396656 @default.
- W2217207621 hasAuthorship W2217207621A5084974609 @default.
- W2217207621 hasConcept C111919701 @default.
- W2217207621 hasConcept C115575686 @default.
- W2217207621 hasConcept C119857082 @default.
- W2217207621 hasConcept C124101348 @default.
- W2217207621 hasConcept C153874254 @default.
- W2217207621 hasConcept C154945302 @default.
- W2217207621 hasConcept C24590314 @default.
- W2217207621 hasConcept C31258907 @default.
- W2217207621 hasConcept C41008148 @default.
- W2217207621 hasConcept C58041806 @default.
- W2217207621 hasConcept C9357733 @default.
- W2217207621 hasConcept C98045186 @default.
- W2217207621 hasConceptScore W2217207621C111919701 @default.
- W2217207621 hasConceptScore W2217207621C115575686 @default.
- W2217207621 hasConceptScore W2217207621C119857082 @default.
- W2217207621 hasConceptScore W2217207621C124101348 @default.
- W2217207621 hasConceptScore W2217207621C153874254 @default.
- W2217207621 hasConceptScore W2217207621C154945302 @default.
- W2217207621 hasConceptScore W2217207621C24590314 @default.
- W2217207621 hasConceptScore W2217207621C31258907 @default.
- W2217207621 hasConceptScore W2217207621C41008148 @default.
- W2217207621 hasConceptScore W2217207621C58041806 @default.
- W2217207621 hasConceptScore W2217207621C9357733 @default.
- W2217207621 hasConceptScore W2217207621C98045186 @default.
- W2217207621 hasLocation W22172076211 @default.
- W2217207621 hasOpenAccess W2217207621 @default.
- W2217207621 hasPrimaryLocation W22172076211 @default.
- W2217207621 hasRelatedWork W1847495902 @default.
- W2217207621 hasRelatedWork W1849547295 @default.
- W2217207621 hasRelatedWork W1906246358 @default.
- W2217207621 hasRelatedWork W1979646154 @default.
- W2217207621 hasRelatedWork W2033644761 @default.
- W2217207621 hasRelatedWork W2067741260 @default.
- W2217207621 hasRelatedWork W2107562869 @default.
- W2217207621 hasRelatedWork W2122131850 @default.
- W2217207621 hasRelatedWork W2132235663 @default.
- W2217207621 hasRelatedWork W2140217547 @default.
- W2217207621 hasRelatedWork W2304996025 @default.
- W2217207621 hasRelatedWork W2470645221 @default.
- W2217207621 hasRelatedWork W2520379808 @default.
- W2217207621 hasRelatedWork W2577995101 @default.
- W2217207621 hasRelatedWork W2588589522 @default.
- W2217207621 hasRelatedWork W2606702010 @default.
- W2217207621 hasRelatedWork W2777205967 @default.
- W2217207621 hasRelatedWork W3117107833 @default.
- W2217207621 hasRelatedWork W3135808354 @default.