Matches in SemOpenAlex for { <https://semopenalex.org/work/W2217371036> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2217371036 abstract "The knowledge of the transcriptome landscape is crucial in molecular biology, and increasingly more important for disease diagnosis and treatments. Broadly speaking, three layers contribute to the importance of the transcriptome landscape. First, the profile of all isoforms of protein-coding genes determines the development path of cells and organisms. Second, the profile of regulatory elements modulates the activity of protein-coding genes. Third, the interplay of protein-coding genes and regulatory elements shapes the dynamic property of transcriptome landscape. Identifying the players in the regulatory network is the first step for reverse-engineering molecular biology. In this thesis, I present four tailored analyses on projects belonging to the first two layers.First, a hybrid assembly pipeline is developed for identification of transcriptome independent of genomic sequences. By combining two complementary sequencing technologies in conjunction with efficient cDNA normalization, a high quality transcriptome can be characterized. It out- performs other assembly tools that focus on one type of input data, and the results are experimentally validated.Second, an analysis framework is developed to characterize full-length transcripts. By tailoring tools for long read-length sequencing technology, transcriptome landscape could be examined with greater detail. Moreover, the association of different RNA processing events could be experimentally measured. The application on fly Dscam gene transcripts resolved the independent splicing hypothesis and calls for re-examination of previous experiments. The application on rat brain greatly enhanced the transcriptome annotation, which is crucial for the neuroscience community that use rat as a model organism.Third, a de novo microRNA prediction tools is presented. By designing sequencing experiments that capture snapshots of miRNA biogenesis process, not only mature and precursor miRNAs could be identified, but also the information on miRNA processing and modification could be learnt. Proof- of-principle experiments on well-studies organism like mouse and C. elegans demonstrate the efficacy and application potential of this method.Finally, a customized pipeline is developed for profiling and characterizing circRNAs. By examining potential splicing junctions based on local alignments, circRNAs can be identified from the otherwise neglected RNA- Seq data. Tens of thousands of circRNAs are identified and quantified in mouse, rat and fly. Further experiments demonstrate that circRNAs are enriched in brain synapses and participate in brain development and neuronal homeostatic plasticity.In summary, this thesis presents four tailored analyses on different aspects of transcriptome landscape. The methods can be used in conjunction towards an integrated understanding of molecular biology and medicine.%%%%Eine genaue Kenntnis des Transkriptoms ist von entscheidender Bedeutung im Bereich der Molekularbiologie und gewinnt Bedeutung bei der Diagnose von Krankheiten und…" @default.
- W2217371036 created "2016-06-24" @default.
- W2217371036 creator A5035438696 @default.
- W2217371036 date "2015-01-01" @default.
- W2217371036 modified "2023-09-23" @default.
- W2217371036 title "Tailored Analysis in Studying Transcriptome Landscape" @default.
- W2217371036 doi "https://doi.org/10.17169/refubium-14816" @default.
- W2217371036 hasPublicationYear "2015" @default.
- W2217371036 type Work @default.
- W2217371036 sameAs 2217371036 @default.
- W2217371036 citedByCount "0" @default.
- W2217371036 crossrefType "dissertation" @default.
- W2217371036 hasAuthorship W2217371036A5035438696 @default.
- W2217371036 hasConcept C104317684 @default.
- W2217371036 hasConcept C105565629 @default.
- W2217371036 hasConcept C141231307 @default.
- W2217371036 hasConcept C150194340 @default.
- W2217371036 hasConcept C162317418 @default.
- W2217371036 hasConcept C194583182 @default.
- W2217371036 hasConcept C50489715 @default.
- W2217371036 hasConcept C53345823 @default.
- W2217371036 hasConcept C54355233 @default.
- W2217371036 hasConcept C70721500 @default.
- W2217371036 hasConcept C86803240 @default.
- W2217371036 hasConceptScore W2217371036C104317684 @default.
- W2217371036 hasConceptScore W2217371036C105565629 @default.
- W2217371036 hasConceptScore W2217371036C141231307 @default.
- W2217371036 hasConceptScore W2217371036C150194340 @default.
- W2217371036 hasConceptScore W2217371036C162317418 @default.
- W2217371036 hasConceptScore W2217371036C194583182 @default.
- W2217371036 hasConceptScore W2217371036C50489715 @default.
- W2217371036 hasConceptScore W2217371036C53345823 @default.
- W2217371036 hasConceptScore W2217371036C54355233 @default.
- W2217371036 hasConceptScore W2217371036C70721500 @default.
- W2217371036 hasConceptScore W2217371036C86803240 @default.
- W2217371036 hasLocation W22173710361 @default.
- W2217371036 hasOpenAccess W2217371036 @default.
- W2217371036 hasPrimaryLocation W22173710361 @default.
- W2217371036 hasRelatedWork W1998115635 @default.
- W2217371036 hasRelatedWork W2029155007 @default.
- W2217371036 hasRelatedWork W2149375411 @default.
- W2217371036 hasRelatedWork W2462757409 @default.
- W2217371036 hasRelatedWork W2519019984 @default.
- W2217371036 hasRelatedWork W2555892463 @default.
- W2217371036 hasRelatedWork W2612724210 @default.
- W2217371036 hasRelatedWork W2740811199 @default.
- W2217371036 hasRelatedWork W2755758726 @default.
- W2217371036 hasRelatedWork W2758143621 @default.
- W2217371036 hasRelatedWork W2783577651 @default.
- W2217371036 hasRelatedWork W2791583078 @default.
- W2217371036 hasRelatedWork W2886641522 @default.
- W2217371036 hasRelatedWork W2949531800 @default.
- W2217371036 hasRelatedWork W2980485497 @default.
- W2217371036 hasRelatedWork W3012954142 @default.
- W2217371036 hasRelatedWork W3092123477 @default.
- W2217371036 hasRelatedWork W3125391146 @default.
- W2217371036 hasRelatedWork W3200047701 @default.
- W2217371036 hasRelatedWork W3214478476 @default.
- W2217371036 isParatext "false" @default.
- W2217371036 isRetracted "false" @default.
- W2217371036 magId "2217371036" @default.
- W2217371036 workType "dissertation" @default.