Matches in SemOpenAlex for { <https://semopenalex.org/work/W2217710247> ?p ?o ?g. }
- W2217710247 abstract "Detecting boundary of an image based on noisy observations is a fundamental problem of image processing and image segmentation. For a $d$-dimensional image ($d=2,3,ldots$), the boundary can often be described by a closed smooth $(d-1)$-dimensional manifold. In this paper, we propose a nonparametric Bayesian approach based on priors indexed by $mathbb{S}^{d-1}$, the unit sphere in $mathbb{R}^{d}$. We derive optimal posterior contraction rates for Gaussian processes or finite random series priors using basis functions such as trigonometric polynomials for 2-dimensional images and spherical harmonics for 3-dimensional images. For 2-dimensional images, we show a rescaled squared exponential Gaussian process on $mathbb{S}^{1}$ achieves four goals of guaranteed geometric restriction, (nearly) minimax optimal rate adapting to the smoothness level, convenience for joint inference and computational efficiency. We conduct an extensive study of its reproducing kernel Hilbert space, which may be of interest by its own and can also be used in other contexts. Several new estimates on modified Bessel functions of the first kind are given. Simulations confirm excellent performance and robustness of the proposed method." @default.
- W2217710247 created "2016-06-24" @default.
- W2217710247 creator A5011476402 @default.
- W2217710247 creator A5064126517 @default.
- W2217710247 date "2017-10-01" @default.
- W2217710247 modified "2023-10-14" @default.
- W2217710247 title "Bayesian detection of image boundaries" @default.
- W2217710247 cites W1229513216 @default.
- W2217710247 cites W1486811909 @default.
- W2217710247 cites W1859758560 @default.
- W2217710247 cites W1972483791 @default.
- W2217710247 cites W1974046151 @default.
- W2217710247 cites W1975684011 @default.
- W2217710247 cites W1984462891 @default.
- W2217710247 cites W1988877167 @default.
- W2217710247 cites W2001085894 @default.
- W2217710247 cites W2009542133 @default.
- W2217710247 cites W2013378870 @default.
- W2217710247 cites W2014341148 @default.
- W2217710247 cites W2019324907 @default.
- W2217710247 cites W2020999234 @default.
- W2217710247 cites W2038862184 @default.
- W2217710247 cites W2040303896 @default.
- W2217710247 cites W2053460147 @default.
- W2217710247 cites W2072063408 @default.
- W2217710247 cites W2093030681 @default.
- W2217710247 cites W2101984093 @default.
- W2217710247 cites W2109504624 @default.
- W2217710247 cites W2116216752 @default.
- W2217710247 cites W2126417278 @default.
- W2217710247 cites W2144400918 @default.
- W2217710247 cites W2157596407 @default.
- W2217710247 cites W2478338686 @default.
- W2217710247 cites W2483891666 @default.
- W2217710247 cites W3104051756 @default.
- W2217710247 cites W3104936529 @default.
- W2217710247 cites W3123767603 @default.
- W2217710247 cites W32980360 @default.
- W2217710247 cites W4211049957 @default.
- W2217710247 cites W4212780293 @default.
- W2217710247 cites W4234610333 @default.
- W2217710247 cites W4248484045 @default.
- W2217710247 cites W4256026523 @default.
- W2217710247 cites W567568486 @default.
- W2217710247 cites W639907764 @default.
- W2217710247 doi "https://doi.org/10.1214/16-aos1523" @default.
- W2217710247 hasPublicationYear "2017" @default.
- W2217710247 type Work @default.
- W2217710247 sameAs 2217710247 @default.
- W2217710247 citedByCount "8" @default.
- W2217710247 countsByYear W22177102472016 @default.
- W2217710247 countsByYear W22177102472019 @default.
- W2217710247 countsByYear W22177102472020 @default.
- W2217710247 countsByYear W22177102472021 @default.
- W2217710247 countsByYear W22177102472022 @default.
- W2217710247 countsByYear W22177102472023 @default.
- W2217710247 crossrefType "journal-article" @default.
- W2217710247 hasAuthorship W2217710247A5011476402 @default.
- W2217710247 hasAuthorship W2217710247A5064126517 @default.
- W2217710247 hasBestOaLocation W22177102471 @default.
- W2217710247 hasConcept C104317684 @default.
- W2217710247 hasConcept C105795698 @default.
- W2217710247 hasConcept C107673813 @default.
- W2217710247 hasConcept C11413529 @default.
- W2217710247 hasConcept C121332964 @default.
- W2217710247 hasConcept C134306372 @default.
- W2217710247 hasConcept C163716315 @default.
- W2217710247 hasConcept C177769412 @default.
- W2217710247 hasConcept C185592680 @default.
- W2217710247 hasConcept C28826006 @default.
- W2217710247 hasConcept C33923547 @default.
- W2217710247 hasConcept C55493867 @default.
- W2217710247 hasConcept C61326573 @default.
- W2217710247 hasConcept C62520636 @default.
- W2217710247 hasConcept C62799726 @default.
- W2217710247 hasConcept C63479239 @default.
- W2217710247 hasConcept C80884492 @default.
- W2217710247 hasConceptScore W2217710247C104317684 @default.
- W2217710247 hasConceptScore W2217710247C105795698 @default.
- W2217710247 hasConceptScore W2217710247C107673813 @default.
- W2217710247 hasConceptScore W2217710247C11413529 @default.
- W2217710247 hasConceptScore W2217710247C121332964 @default.
- W2217710247 hasConceptScore W2217710247C134306372 @default.
- W2217710247 hasConceptScore W2217710247C163716315 @default.
- W2217710247 hasConceptScore W2217710247C177769412 @default.
- W2217710247 hasConceptScore W2217710247C185592680 @default.
- W2217710247 hasConceptScore W2217710247C28826006 @default.
- W2217710247 hasConceptScore W2217710247C33923547 @default.
- W2217710247 hasConceptScore W2217710247C55493867 @default.
- W2217710247 hasConceptScore W2217710247C61326573 @default.
- W2217710247 hasConceptScore W2217710247C62520636 @default.
- W2217710247 hasConceptScore W2217710247C62799726 @default.
- W2217710247 hasConceptScore W2217710247C63479239 @default.
- W2217710247 hasConceptScore W2217710247C80884492 @default.
- W2217710247 hasIssue "5" @default.
- W2217710247 hasLocation W22177102471 @default.
- W2217710247 hasLocation W22177102472 @default.
- W2217710247 hasLocation W22177102473 @default.
- W2217710247 hasLocation W22177102474 @default.
- W2217710247 hasOpenAccess W2217710247 @default.